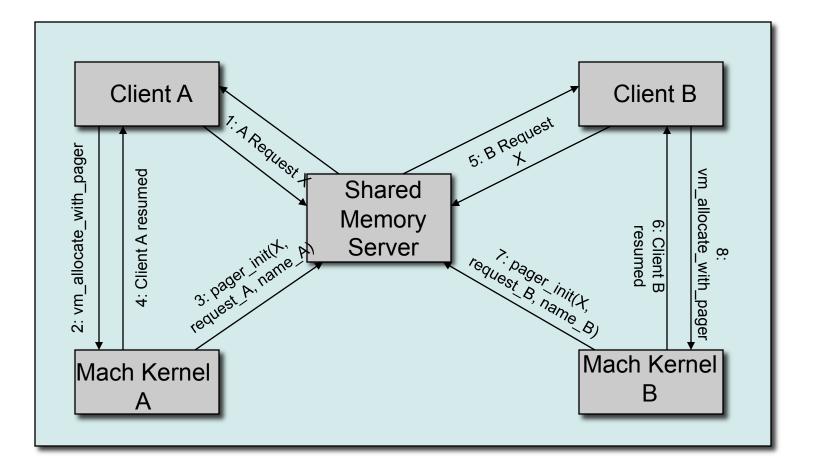
CSE 60641: Operating Systems

- The duality of memory and communication in the implementation of a multiprocessor operating system. Young, M., Tevanian, A., Rashid, R., Golub, D., and Eppinger, J. SOSP '87
 - Implementing user level memory system using the communication primitives in Mach

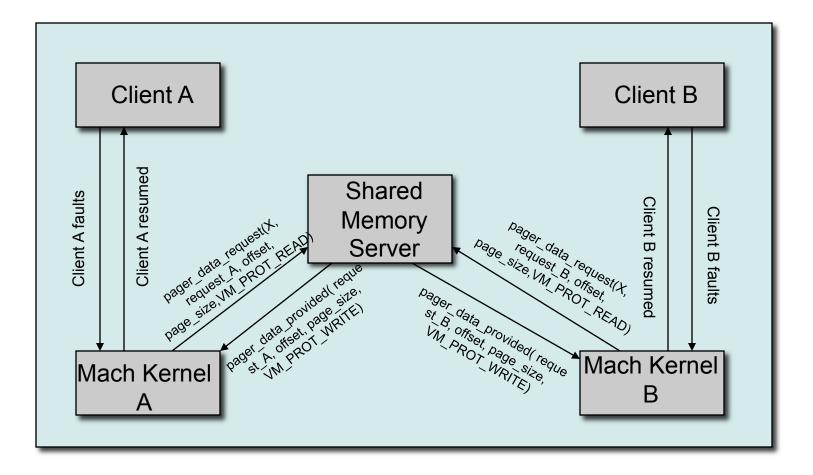
Mach

- Task, thread, port, messages, memory objects
- Ports
 - Inter-process communication
 - Protected bounded queue within the kernel
 - Access to port is granted by receiving a message containing a port capability (to send or receive messages)
 - Any number of senders, only one receiver
- Message
 - Fixed length header and variable size collection of typed data objects. Messages may contain port capabilities or imbedded pointers as long as they are properly typed.

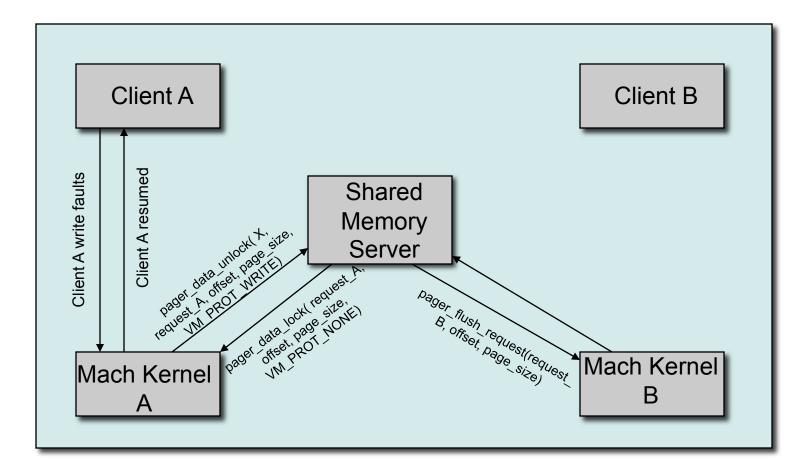
External Memory management


- Unified way for user level management of backing store, file system, networked file system etc.
- Calls made by an application program to cause a memory object to be mapped into its address space
- Calls made by the kernel on the data manger
- Calls made by the data manager on the Mach kernel to control use of its memory objects
 - Calls are made via ports and are asynchronous
 - All the components can be distributed
 - Can support multiple clients for the same objects (share)

- Application to kernel interface
 - vm_allocate_with_pager: library can call this to implement a file system (by mapping secondary storage manager)
- Kernel to data manager interface
 - pager_init(), pager_data_request(), pager_data_write(), pager_data_unlock(), pager_create()
- Data manager to kernel interface
 - Pager_data_provided(), pager_data_lock(), pager_flush_request(), pager_clean_request(), pager_cache(), pager_data_unavailable()
- All interactions via messages to ports and asynchronous. Need extra buffers because of delay


Consistent Network Shared Memory (Initialization)

Courtesy: Rajesh Sudarsan @ VirginaTech


Consistent Network Shared Memory (Read)

Courtesy: Rajesh Sudarsan @ VirginaTech

Consistent Network Shared Memory (Write)

Courtesy: Rajesh Sudarsan @ VirginaTech

What are the key ideas?

- Implement memory as a communications mechanism
 - Hardware systems use similar ideas:
 - UMA Uniform memory access
 - NUMA Non-UMA
 - NORMA No Remote memory access
- Applications:
 - Copy on reference process migration
 - Database management: Camelot
 - AI Knowledge base: Agora

Performance evaluation

- Sketchy
 - Avoid deadlocks using extra threads
 - Memory mapped file system can be fast at the expense of storage safety
- The data manager is trusted to not be malicious and respond within reasonable amounts of time

