
CSE 60641: Operating Systems

•  Implementing Fault-Tolerant Services Using the

 State Machine Approach: a tutorial Fred B.
 Schneider, ACM Computing Surveys 22(4)
:299-319, December 1990
–  Distributed systems paper, SOSP Hall of Fame winner
–  Citation: The paper that explained how we should think

 about replication ... a model that turns out to underlie
 Paxos, Virtual Synchrony, Byzantine replication, and
 even Transactional 1-Copy Serializability

–  Theoretical foundations, we will read one or maybe two
 more papers like this one. These papers should be a
 paper in your bag-of-tricks

Oct-2-08 CSE 60641: Operating Systems 1

Paxos

•  “A fault-tolerant file system called Echo was built at SRC in

 the late 80s. The builders claimed that it would maintain
 consistency despite any number of non-Byzantine faults, and
 would make progress if any majority of the processors were
 working. As with most such systems, it was quite simple
 when nothing went wrong, but had a complicated algorithm
 for handling failures based on taking care of all the cases
 that the implementers could think of. I decided that what
 they were trying to do was impossible, and set out to prove
 it. Instead, I discovered the Paxos algorithm. Paxos
 contains the first three-phase commit algorithm that is a real
 algorithm, with a clearly stated correctness condition and a
 proof of correctness. “
–  Leslie Lamport

10/2/08 CSE 60641: Operating Systems 2

Paxos algorithm

•  Assume a collection of processes that can propose

 values. A consensus algorithm ensures that a single
 one among the proposed values is chosen. If no
 value is proposed, then no value should be chosen.
 If a value has been chosen, then processes should
 be able to learn the chosen value. The safety
 requirements for consensus are:
–  Only a value that has been proposed may be chosen,
–  Only a single value is chosen, and
–  A process never learns that a value has been chosen

 unless it actually has been
–  Leslie Lamport

10/2/08 CSE 60641: Operating Systems 3

Virtual Synchrony

Virtual synchrony is an interprocess messaging passing

 (sometimes called event queue management) technology.
 Virtual synchrony systems allow programs running in a
 network to organize themselves into process groups, and to
 send messages to groups (as opposed to sending them to
 specific processes). Each message is delivered to all the
 group members, in the identical order, and this is true even
 when two messages are transmitted simultaneously by
 different senders. Application design and implementation is
 greatly simplified by this property: every group member sees
 the same events (group membership changes, and incoming
 messages) and in the same order. – Wikipedia

Exploiting virtual synchrony in distributed systems". K.P. Birman
 and T. Joseph. SOSP ‘87

10/2/08 CSE 60641: Operating Systems 4

Byzantine Generals problem

•  We imagine that several divisions of the Byzantine army are

 camped outside an enemy city, each division commanded by
 its own general. The generals can communicate with one
 another only by messenger. After observing the enemy, they
 must decide upon a common plan of action. However, some
 of the generals may be traitors, trying to prevent the loyal
 generals from reaching agreement. The generals must have
 an algorithm to guarantee that
–  All loyal generals decide upon the same plan of action
–  A small number of traitors cannot cause the loyal generals

 to adopt a bad plan
•  The Byzantine Generals Problem, Leslie Lamport, Marshall

 Pease and Robert Shostak, ACM Transactions on
 Programming Languages and Systems 4, 3, July 1982.

10/2/08 CSE 60641: Operating Systems 5

Distributed Systems

•  Clients and Services

–  The goal is to provide fault tolerant services
•  Failure models:

–  Fail stop – t component failure requires t+1 copies
–  Byzantine – t component failure requires 2t+1 copies
–  More precise than statistical measures such as MTBF

•  Replica coordination: all replicas receive and
 process the same sequence of requests
–  Agreement: Every non faulty state machine replica

 receives every request
–  Order: Every non faulty state machine replica processes

 the requests it receives in the same relative order

10/2/08 CSE 60641: Operating Systems 6

•  Agreement
–  All non faulty processors agree on the same value
–  If the transmitter is non faulty, then all non faulty

 processors use its value as the one on which they agree
•  Order

–  A replica processes the next stable request with the
 smallest unique identifier
•  Use logical clocks (we will read this paper later)
•  FIFO channels
•  Synchronized real time clocks

•  Stability: request is stable if a larger unique identifier
 has been received from every client

10/2/08 CSE 60641: Operating Systems 7

•  Replica generated identifiers
•  Client generated identifiers

•  Tolerating Faulty Output devices
–  Outputs used outside the system
–  Outputs used inside the system

•  Tolerating faulty clients
–  Replicating clients

•  Reconfiguration

10/2/08 CSE 60641: Operating Systems 8

