
CSE 60641: Operating Systems
•  George C. Necula and Peter Lee, Safe Kernel

 Extensions Without Run-Time Checking, OSDI ‘96
–  SIGOPS Hall of fame citation: This paper introduced the

 notion of proof carrying code (PCC) and showed how it
 could be used for ensuring safe execution by kernel
 extensions without incurring run-time overhead. PCC turns
 out to be a general approach for relocating trust in a system;
 trust is gained in a component by trusting a proof checker
 (and using it to check a proof the component behaves as
 expected) rather than trusting the component per se. PCC
 has become one of the cornerstones of language-based
 security.

Sep-24-08 CSE 60641: Operating Systems 1

Recap
•  Monolithic vs microkernel
•  Threads vs events
•  Extensibility: exokernel vs SPIN
•  Continuations, scheduler activations
•  Resource containers

•  Today’s paper addresses similar problem as SPIN

9/24/08 CSE 60641: Operating Systems 2

PCC
•  What problem are we addressing?

–  Extending functionality by moving functionality into the
 kernel (monolithic) similar to SPIN

–  SPIN achieves safety by using Modula 3
–  Necula achieves safety using proof carrying code (PCC)

1.  Create a security policy and give it to application &
 kernel – policy really describes the secure
 hardware functionality desired

–  Actual hardware can perform unsafe actions

2.  Take the user library, compute the safety proof
 (using security policy) and send both to the kernel

9/25/08 CSE 60641: Operating Systems 3

3.  Kernel computes the safety predicate using VC
 rules. Check the safety predicate against the
 safety proof. If the checker finishes, then the code
 is safe (for the safety policy) and so use it without
 any further checks

–  Using first order logic stuff, they change the proof to
 typechecking which makes it computationally simple and
 efficient (1.4 ms). One can write your own type-checker
 rather than using public library if worried about security

4.  If code is modified, safety predicate will not match
 safety proof. Code modifications which still creates
 same safety predicate are allowed

9/25/08 CSE 60641: Operating Systems 4

5.  If proof is modified, either it will be invalid or not
 correspond to safety predicate

•  Signed code proves the trusted origin but not the
 code itself

•  Java type checking – performance problems
• 
•  Problem with approach: Proofs can be

 exponentially long
–  Use loops at certain spots can help

9/25/08 CSE 60641: Operating Systems 5

