Fresh from the boat: Great Duck Island habitat monitoring

Robert Szewczyk Joe Polastre Alan Mainwaring June 18, 2003

Outline

- Application overview
- System & node evolution
- Status & preliminary evaluations
- Conclusions

Great Duck Island Petrel monitoring

- Goal: build ecological models for breeding preferences of Leach's Storm Petrel
 - Burrow (nest) occupancy during incubation
 - Differences in the micro-climates of active vs. inactive burrows
 - Environmental conditions during 7 month breeding season
- Inconspicuous Operation
 - Reduce the "observer effect"
- Sensor Network
 - Lifetime, size, quantity requirements
 - Environmental conditions
- Data
 - As much as possible in the power budget
- Predictable operation
 - Confidence in collected readings
- Unattended, off-the-grid operation

System structure

System implementation

Node architecture advances

- Problems observed in previous deployment
 - Size motes were too large to fit in many burrows
 - Packaging did not provide adequate protection for electronics or proper conditions for sensors
 - Reliability last retreat talk; high rate of node loss, lack of scientifically meaningful environmental data
 - Power consumption boost converter a minimal return at a high price
- New generation of motes to address most of these concerns
 - Platform based on mica2dot
 - Primarily calibrated, digital sensors
 - Multiple application-specific packaging, power, and sensing options

Mote evolution

Miniature weather station

- Sensor suite
 - Sensirion humidity + temperature sensor
 - Intersema pressure + temperature sensor
 - TAOS total solar radiation sensor
 - Hamamatsu PAR sensor
 - Radiation sensors measure both direct and diffuse radiation
- Power supply
 - SAFT LiS02 battery, ~1 Ah @ 2.8V
- Packaging
 - HDPE tube with coated sensor boards on both ends of the tube
 - Additional PVC skirt to provide extra shade and protection against the rain

Burrow occupancy detector

- Sensor suite
 - Sensirion humidity + temperature sensor
 - Melexis passive IR sensor + conditioning circuitry
- Power supply
 - GreatBatch lithium thionyl chloride 1 Ah battery
 - Maxim 5V boost converter for Melexis circuitry
- Packaging
 - Sealed HDPE tube, emphasis on small size

Software architecture advances

- Bi-directional communication with low-power listenting
 - .1% duty cycle
- Parameter adjustment and query
 - Sample rate changes, sensor status queries
- Improved power management scheme
 - Fine granularity through StdControl interface
 - 20 uA sleep mode
- Multihop deployment planned for July
- What it isn't: GSK
 - Emphasis on simplicity and reliability, rather than generality
 - Compatible with most GSK server-side interfaces

Application status

- Sensor network
 - 26 burrow motes deployed
 - 12 weather station motes deployed (+2 for monitoring the insides of the base station case)
 - » Another 14 are awaiting deployment within days

Redundant database setup online

- 2 base stations logging packets to 2 database servers
- Replication to Berkeley

Verification infrastructure

- Overview cameras in place
- Burrow cameras temporarily offline, wireless bridge problem
- Video logging still needs to be synchronized with the mote data service

Burrow motes: deployment

Burrow motes: link performance

Burrow motes: sample data

Burrow motes: sample data

Burrow motes: sample data

Weather stations: deployment

Weather stations: link performance

Packaging evaluation

- We observed what happens to motes when packaging fails
 - Battery venting, H2SO3 corroding the entire mote
 - Need to assemble the package correctly we failed to create proper indication os a good seal
 - Majority of packages survived severe weather!
- Still awaiting evaluation whether the package creates an environment suitable for sensing
 - Convective heating, etc.

Conclusions

- Next generation of environmental sensor networks
 - Smaller, better, more robust
 - Application specific sensor suites vs. kitchen sink

Infrastructure matters

- Redundancy at every level
- Remote administration and rebooting
- Data verification is key!

More analysis to come

- Biology studies based on the system
- Compare notes with James Reserve system