Lecture slides from Ohio State (Prof. Anish Arora)

Wireless Sensor Networks for Habitat Monitoring

Intel Research Lab EECS UC at Berkeley College of the Atlantic

Motivation

Questions

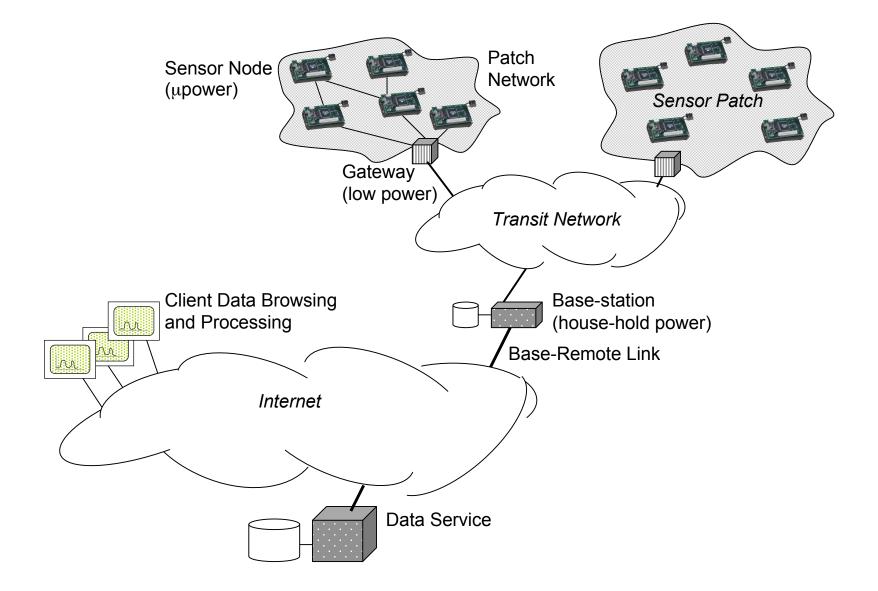
- What environmental factors make for a good nest?
- How much can they vary?
- What are the occupancy patterns during incubation?
- What environmental changes occurs in the burrows and their surroundings during the breeding season?

Motivation

Problems

- Seabird colonies are very sensitive to disturbances
- The impact of human presence can distort results by changing behavioral patterns and destroy sensitive populations
- Repeated disturbance will lead to abandonment of the colony

Solution


• Deployment of a sensor network

Great Duck Island Project

GDI Sensor Network

Mica Sensor Node

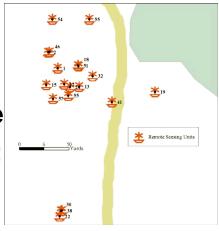
Left: Mica II sensor node 2.0x1.5x0.5 cu. In. Right: weather board with temperature, thermopile (passive IR), humidity, light, acclerometer sensors, connected to Mica II node

- Single channel, 916 Mhz radio for bi-directional radio @40kps
- 4MHz micro-controller
- 512KB flash RAM
- 2 AA batteries (~2.5Ah), DC boost converter (maintain voltage)
- Sensors are pre-calibrated (±1-3%) and interchangeable

Power Management

Sensor Node Power

- Limited Resource (2 AA batteries)
- Estimated supply of 2200 mAh at 3 volts
- Each node has 8.128 mAh per day (9 months)
- Sleep current 30 to 50 uA (results in 6.9 mAh/day for tasks)
- Processor draws apx 5 mA => can run at most 1.4 hours/day
- Nodes near the gateway will do more forwarding

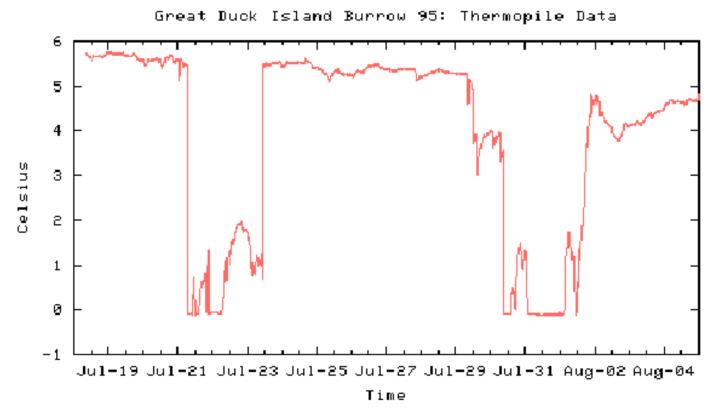

Operation	nAh
Transmitting a packet	20.000
Receiving a packet	8.000
Operating sensor for 1 sample (analog)	1.080
Operating sensor for 1 sample (digital)	0.347
Reading a sample from the ADC	0.011
EEPROM Read Data	1.111
EEPROM Program/Erase Data	83.333

Operation	Operating Time/Day	Duty-Cycle	Sample Rate
Always Sleep	24 hours	0%	0 samples/day
$+ \mu CPU$ on	75 minutes	3.61%	0 samples/day
+ Radio On (Listen)	28 minutes	1.94%	0 samples/day
+ Sample All Sensors	21 minutes	1.45%	630 samples/day
+ Transmit Samples	20 minutes	1.38%	600 samples/day

Communication

Routing

- Routing directly from node to gateway not possible
- Approach proposed for scheduled communication:
 - Determine routing tree
 - Each gate is assigned a level based on the tree
 - Each level transmits to the next and returns to sleep
 - Process continues until all level have completed transmission
 - The entire network returns to sleep mode
 - The process repeats itself at a specified point in the future



Network Re-tasking

Initially collect absolute temperature readings

- After initial interpretation, could be realized that information of interest is contained in significant temperature changes
- Full reprogramming process is costly:
 - Transmission of 10 kbit of data
 - Reprogramming application: 2 minutes @ 10 mA
 - Equals one complete days energy
- Virtual Machine based retasking:
 - Only small parts of the code needs to be changed

Sensed Data

Raw thermopile data from GDI during 19-day period from 7/18-8/5/2002. Show difference between ambient temperature and the object in the thermopile's field of view. It indicates that the petrel left on 7/21, return on 7/23, and between 7/30 and 8/1

Health and Status Monitoring

- Monitor the mote's health and the health of neighboring motes
- Duty cycle can be dynamically adjusted to alter lifetime
- Periodically include battery voltage level with sensor readings (0~3.3volts)
- Can be used to infer the validity of the mote's sensor readings

Conclusion

Paper conclusion

- Applied wireless sensor networks to real-world habitat monitoring
- Two small scale sensor networks deployed at Great Duck Island and James Reserve (one patch each)
- Results not evaluated

Future

Develop a habitat monitoring kit