
Overview: Chapter 7

♠ Sensor node platforms must contend with many
issues
♠ Energy consumption
♠ Sensing environment
♠ Networking
♠ Real-time constraints

♠ Not typical distributed system application
♠ Programming Models

♠ Programs by end users
♠ Encode application logic
♠ Abstract details from users

♠ Programs by application developers
♠ Expose data acquisition and hardware interface to developers



Sensor Node Hardware

♠ Categories
♠ Augmented general purpose

♠ PC104, Sensoria WINS NG, PDAs
♠ Commercial off-the-shelf (COTS) OS & components:

Wndows CE, Linux, Bluetooth, IEEE 802.11

♠ Dedicated embedded sensor nodes
♠ Berkeley motes, UCLA Medusa, Ember nodes, MIT µAMP
♠ COTS chip sets (small form factors), programming

languages(e.g., C)

♠ System-on-chip (SoC)
♠ Smart dust, BWRC picoradio nodes, PASTA nodes



Berkeley Motes

♠ Limited memory
♠Program memory: 8 - 128 KB
♠RAM: 0.5 - 4 KB
♠External storage (Flash): 32 - 512 KB

♠ Limited Communication
♠Max 50 kbps (with hardware acccel.)

♠ Energy savings is important
♠12 mA to transmit data



Programming Challenges

♠ Traditional programming models not suitable
♠ Programmer must handle with messaging,

networking, event synch., interrupts etc.
♠ Embedded OS (if any) expose hardware details to

programmer

♠ Distributed algorithms/data structures
difficult to implement

♠ Respond to multiple stimuli quickly



Software Platforms: TinyOS

♠ Targeted for resource constrained platforms (motes)
♠ Small memory footprint

♠ No filesystem
♠ Only static memory allocation

♠ Software made up of components
♠ Components create tasks and added to task

scheduler
♠ Tasks run to completion: no preempting by other tasks

♠ Events: interrupts from hardware
♠ Run to completion, can preempt tasks



Software Platforms: nesC

♠ Extension of C for TinyOS
♠ Components

♠ Interface
♠ Defines what functionality component uses and provides

♠ Implementations
♠ Modules: written in C-like syntax
♠ Configurations: connect interfaces of existing components

♠ Cuncurrency
♠ Asynchronous code (AC) vs. Synchronous code (SC)
♠ SC atomic w.r.t. other SC
♠ Programmers must understand concurrency issues in code



Software Platforms:
TinyGALS

♠ Dataflow language
♠ Programming model

♠ Supports all TinyOS components
♠ Construct asynch. actors from synch. components
♠ Construct application by connecting asynch.

components through FIFO queues

♠ Code Generation
♠ Map high-level constructs to low-level code for

motes
♠ Automatically generate code for scheduling,

event handling, FIFO queues



Node-Level Simulators

♠ Sensor node model
♠ Mobility of nodes
♠ Energy consumption

♠ Communication model
♠ Capture details of communication (RF propagation delay,

MAC layer etc.)

♠ Physical environmental model
♠ Model physical phenomena in operating environment

♠ Statistics and visualization
♠ Collect results for analysis



Node-Level Simulator: ns-2 &
TOSSIM

♠ ns-2
♠ Originally developed for wired networks
♠ Extensions for sensor nodes

♠ Node locations vs. logical addresses
♠ Energy models
♠ Physical phenomena

♠ TOSSIM
♠ Simulator for TinyOS apps on Berkeley motes
♠ Compiles nesC source into simulator components



State-Centric Programming

♠ Applications more than simple distributed programs
♠ Applications depend on state of physical environment

♠ Collaboration Groups
♠ Set of entities that contribute to state updates
♠ Abstracts network topology and communication protocols

♠ Multi-target tracking problem
♠ Global state decoupled into separate pieces

♠ Each piece managed by different principal
♠ State updated by looking at inputs from other principals
♠ Collaboration groups define communication and roles of each

principal


