
Security for Sensor Networks:
Cryptography and Beyond

David Wagner
University of California at Berkeley

In collaboration with:
Chris Karlof, David Molnar,

Naveen Sastry, Umesh Shankar

Learn From History…

analog cellphones: AMPS1980

1990

2000

analog cloning, scanners
fraud pervasive & costly

digital: TDMA, GSM

TDMA eavesdropping [Bar]

more TDMA flaws [WSK]
GSM cloneable [BGW]
GSM eavesdropping
 [BSW,BGW]

Future: 3rd gen.: 3GPP, …

cellphones

802.11, WEP

2001

2002

WEP broken [BGW]
WEP badly broken [FMS]

WPA

2000

1999

Future: 802.11i
2003

 attacks pervasive

wireless networks

Berkeley motes

2002
TinyOS 1.0

TinyOS 1.1, TinySec
2003

sensor networks

Let’s get it right the first time!

Sensor Nets: So What?

What’s different about sensor nets?
 Stringent resource constraints
 Insecure wireless networks
 No physical security
 Interaction with the physical environment

Back to the 90’s

New

Back to the 70’s

Where Are We Going?

Some research challenges in sensor net security:
 Securing the communication link
 Securing distributed services
 Tolerating captured nodes

In this talk: Techniques and thoughts on these problems.

 Cryptography and beyond

I. Communications Security:
 The TinySec Architecture

“It doesn’t matter how good your crypto is if it is
never used.”

TinySec Design Philosophy
The lesson from 802.11:
 Build crypto-security in, and turn it on by default!

TinySec Design Goals:
1. Encryption turned on by default
2. Encryption turned on by default
3. Encryption turned on by default
⇒ Usage must be transparent and intuitive

⇒ Performance must be reasonable

4. As much security as we can get, within these constraints

Challenges
 Must avoid complex key management

 TinySec must be super-easy to deploy

 Crypto must run on wimpy devices
 We’re not talking 2GHz P4’s here!
 Dinky CPU (1-4 MHz), little RAM (≤ 256 bytes), lousy battery
 Public-key cryptography is right out

 Need to minimize packet overhead
 Radio is very power-intensive:

1 bit transmitted ≈ 1000 CPU ops
 TinyOS packets are ≤ 28 bytes long
 Can’t afford to throw around an 128-bit IV here, a 128-bit MAC there

Easy Key Management

network
base
station

k

k

k

k

k

k

Making key management easy: global shared keys

Be Easy to Deploy

Making deployment easy:
plug-n-play crypto + link-layer security

SecureGenericComm

App

Radio

GenericComm

App

Radio

Perform Well on Tiny Devices

 Use a block cipher for both encryption & authentication
 Skipjack is good for 8-bit devices; low RAM overhead

Radio Stack
[MicaHighSpeedRadioM/

CC1000RadioIntM]

TinySecM

CBC-ModeM

SkipJackM

CBC-MACM

Minimize Packet Overhead

Minimize overhead: cannibalize, cheat, steal

dest A
M IVle
n

data MAC

2 1 41 4

Encrypted

MAC’ed

Key Differences
No CRC -2 bytes
No group ID -1 bytes
MAC +4 bytes
IV +4 bytes

Total: +5 bytes

Tricks for Low Overhead
 CBC mode encryption, with encrypted IV

 Allows flexible IV formatting:
4 byte counter, + cleartext hdr fields (dest, AM type, length);
gets the most bang for your birthday buck

 IV robustness: Even if IV repeats, plaintext variability may provide
an extra layer of defense

 Ciphertext stealing avoids overhead on variable-length packets

 CBC-MAC, modified for variable-length packets
 Small 4-byte MAC trades off security for performance; the good

news is that low-bandwidth radio limits chosen-ciphertext attacks
 Can replace the application CRC checksum; saves overhead

 On-the-fly crypto: overlap computation with I/O

More Tricks & Features
 Early rejection for packets destined elsewhere

 Stop listening & decrypting once we see dst addr ≠ us

 Support for mixed-mode networks
 Interoperable packet format with unencrypted packets,

so network can carry both encrypted + unencrypted traffic
 Crypto only where needed ⇒ better performance
 Length field hack: steal 2 bits to distinguish between modes

 Support fine-grained mixed-mode usage of TinySec
 Add 3 settings: no crypto, integrity only, integrity+secrecy
 These come with performance tradeoffs
 Select between settings on per-application or per-packet basis

More Performance Tricks
 App-level API for end-to-end encryption

 TinySec focuses mainly on link-layer crypto,
but end-to-end crypto also has value

 End-to-end secrecy enables performance optimizations (don’t decrypt
& re-encrypt at every hop), enables more sophisticated per-node
keying, but incompatible with in-network transformation and
aggregation; thus, not always appropriate

 End-to-end integrity less clear-cut, due to DoS attacks

TinySec: Current Status
 Design + implementation stable
 Released in TinyOS 1.1

 Integration with RFM & Chipcon radio stacks; supports nesC 1.1
 Simple key management; should be transparent

 Several external users
 Including: SRI, BBN, Bosch

TinySec Evaluation
Wins:
 Performance is ok
 Integration seems truly easy

Neutral:
 Out of scope: per-node keying, re-keying, sophisticated key

mgmt; PKI; secure link-layer ACKs
 No security against insider attacks;

What if a node is captured, stolen, or compromised?

Losses:
 Not turned on by default in TinyOS yet

