
Security for Sensor Networks:
Cryptography and Beyond

David Wagner
University of California at Berkeley

In collaboration with:
Chris Karlof, David Molnar,

Naveen Sastry, Umesh Shankar

Learn From History…

analog cellphones: AMPS1980

1990

2000

analog cloning, scanners
fraud pervasive & costly

digital: TDMA, GSM

TDMA eavesdropping [Bar]

more TDMA flaws [WSK]
GSM cloneable [BGW]
GSM eavesdropping
 [BSW,BGW]

Future: 3rd gen.: 3GPP, …

cellphones

802.11, WEP

2001

2002

WEP broken [BGW]
WEP badly broken [FMS]

WPA

2000

1999

Future: 802.11i
2003

 attacks pervasive

wireless networks

Berkeley motes

2002
TinyOS 1.0

TinyOS 1.1, TinySec
2003

sensor networks

Let’s get it right the first time!

Sensor Nets: So What?

What’s different about sensor nets?
 Stringent resource constraints
 Insecure wireless networks
 No physical security
 Interaction with the physical environment

Back to the 90’s

New

Back to the 70’s

Where Are We Going?

Some research challenges in sensor net security:
 Securing the communication link
 Securing distributed services
 Tolerating captured nodes

In this talk: Techniques and thoughts on these problems.

 Cryptography and beyond

I. Communications Security:
 The TinySec Architecture

“It doesn’t matter how good your crypto is if it is
never used.”

TinySec Design Philosophy
The lesson from 802.11:
 Build crypto-security in, and turn it on by default!

TinySec Design Goals:
1. Encryption turned on by default
2. Encryption turned on by default
3. Encryption turned on by default
⇒ Usage must be transparent and intuitive

⇒ Performance must be reasonable

4. As much security as we can get, within these constraints

Challenges
 Must avoid complex key management

 TinySec must be super-easy to deploy

 Crypto must run on wimpy devices
 We’re not talking 2GHz P4’s here!
 Dinky CPU (1-4 MHz), little RAM (≤ 256 bytes), lousy battery
 Public-key cryptography is right out

 Need to minimize packet overhead
 Radio is very power-intensive:

1 bit transmitted ≈ 1000 CPU ops
 TinyOS packets are ≤ 28 bytes long
 Can’t afford to throw around an 128-bit IV here, a 128-bit MAC there

Easy Key Management

network
base
station

k

k

k

k

k

k

Making key management easy: global shared keys

Be Easy to Deploy

Making deployment easy:
plug-n-play crypto + link-layer security

SecureGenericComm

App

Radio

GenericComm

App

Radio

Perform Well on Tiny Devices

 Use a block cipher for both encryption & authentication
 Skipjack is good for 8-bit devices; low RAM overhead

Radio Stack
[MicaHighSpeedRadioM/

CC1000RadioIntM]

TinySecM

CBC-ModeM

SkipJackM

CBC-MACM

Minimize Packet Overhead

Minimize overhead: cannibalize, cheat, steal

dest A
M IVle
n

data MAC

2 1 41 4

Encrypted

MAC’ed

Key Differences
No CRC -2 bytes
No group ID -1 bytes
MAC +4 bytes
IV +4 bytes

Total: +5 bytes

Tricks for Low Overhead
 CBC mode encryption, with encrypted IV

 Allows flexible IV formatting:
4 byte counter, + cleartext hdr fields (dest, AM type, length);
gets the most bang for your birthday buck

 IV robustness: Even if IV repeats, plaintext variability may provide
an extra layer of defense

 Ciphertext stealing avoids overhead on variable-length packets

 CBC-MAC, modified for variable-length packets
 Small 4-byte MAC trades off security for performance; the good

news is that low-bandwidth radio limits chosen-ciphertext attacks
 Can replace the application CRC checksum; saves overhead

 On-the-fly crypto: overlap computation with I/O

More Tricks & Features
 Early rejection for packets destined elsewhere

 Stop listening & decrypting once we see dst addr ≠ us

 Support for mixed-mode networks
 Interoperable packet format with unencrypted packets,

so network can carry both encrypted + unencrypted traffic
 Crypto only where needed ⇒ better performance
 Length field hack: steal 2 bits to distinguish between modes

 Support fine-grained mixed-mode usage of TinySec
 Add 3 settings: no crypto, integrity only, integrity+secrecy
 These come with performance tradeoffs
 Select between settings on per-application or per-packet basis

More Performance Tricks
 App-level API for end-to-end encryption

 TinySec focuses mainly on link-layer crypto,
but end-to-end crypto also has value

 End-to-end secrecy enables performance optimizations (don’t decrypt
& re-encrypt at every hop), enables more sophisticated per-node
keying, but incompatible with in-network transformation and
aggregation; thus, not always appropriate

 End-to-end integrity less clear-cut, due to DoS attacks

TinySec: Current Status
 Design + implementation stable
 Released in TinyOS 1.1

 Integration with RFM & Chipcon radio stacks; supports nesC 1.1
 Simple key management; should be transparent

 Several external users
 Including: SRI, BBN, Bosch

TinySec Evaluation
Wins:
 Performance is ok
 Integration seems truly easy

Neutral:
 Out of scope: per-node keying, re-keying, sophisticated key

mgmt; PKI; secure link-layer ACKs
 No security against insider attacks;

What if a node is captured, stolen, or compromised?

Losses:
 Not turned on by default in TinyOS yet 

