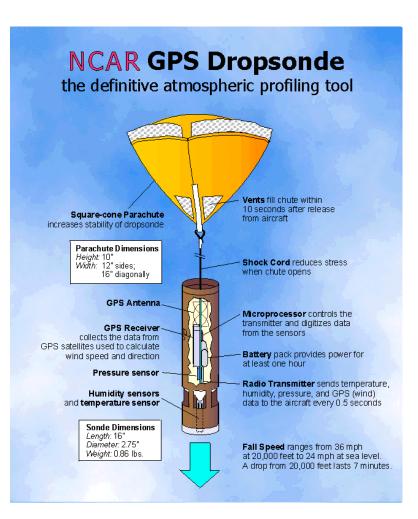
Outline


- Jude Allred, Ahmad Bilal Hasan, Saroch Panichsakul, William Pisano, Peter Gray, Jyh Huang, Richard Han, Dale Lawrence, Kamran Mohseni. SensorFlock: an airborne wireless sensor network of micro-air vehicles. Sensys, Nov 2007
 - Micro-air vehicle semi-autonomous flight control with loiter circles for hovering
 - http://www.mae.ufl.edu/mav/Ourmavs01.html
 - Wireless transmission characteristics for Air-to-Air and Air-to-Ground communications

Application scenarios

- Chemical dispersion sampling
 - Toxins, pollutant etc.
- Atmospheric weather sensing
 - MAVs with temperature, pressure, humidity …
- 3-D sensing possible if the MAV can fly to the different depths

Existing Approaches

- Balloons and dropsondes
 - Passive
 - cannot chase event
- Large unmanned air vehicle (2-3 meters)
 - Dangerous for air traffic and ground personnel
- Small bird sized
 - Safe: 500 grams, 20 m/s
 - Propeller in back, foam
 - Cheap: \$600
 - Plentiful

Avionics

- 8-bit microcontroller
 - Xbee Pro Zigbee 2.4 GHz radio
 - Packet based rather than bit based in Mica-2
 - Backup with RC link
 - GPS, single roll rate Gyro, absolute pressure sensor
- Fail-safe operation
 - Flown within visual range (0.5 km vs 1.5 km for the wireless link)
 - When out of RC link range, kill motor and soft land
- Launcher
 - Plane-A-Pult automatic launcher

Control sub-system

- Trajectory adjustment: 10 Hz
- Roll-rate adjustment: 100 Hz
- Network routing: 40 Hz
 - 10 ms per quanta
 - 56 kbps
- Data packets: 50 bytes
 - Source ID
 - GPS location
 - GPS time
 - Hop count
 - Seqence number
 - Sender ID
 - Sender RSSI (Received Signal Strength Indicator)

Experiments

- Flight test with 5 planes
 - Circular loitering mode
- Air-to-air received signal strength
 - Path loss co-efficient: A2A: 1.9, A2G: 2.1, G2G: 3.5
 - Urban cellular: 2.-3.5
- Antenna orientation:
 - Perpendicular to the aircraft
- Symmetry:
 - A2A links are symmetric
- Characterization of packet loss
 - Incomplete, higher with distance for A2A possibly because of buffer overflow on the routers
- Airbourne multihop not done because of line-ofsight requirements for flights

Discussion

- Relevance of hardware chosen
- Relevance of application scenario
- Relevance of research challenges addressed
 - Scalability?
 - Aggregation mechanisms?