Overview: Active Sensor networks

- Philip Levis, David Gay, and David Culler, Active Sensor Networks. In Proceedings of the Second USENIX/ACM Symposium on Networked Systems Design and Implementation (NSDI 2005)
 - Enabling dynamic programming on the sensor system
 - Recaliberate calibration after deployment
 - Post processing to reduce network traffic

Problem

- Sensor networks are deployed in areas where we don't know apriori what to expect
 - Dynamically reprogram sensors: change what they sense
- Question: How do we reprogram
 - send the new native code could be large
 - send a script new code depends on the script language
 - Code for a single VM (Mate) not flexible
 - Limited functionality, not extensible for specific application requirements
 - JavaVM too expensive for some applications
 - Send code as application specific virtual machine
 - Small size code, nearly as fast as native code
 - Extensible type support, concurrency control, code propagation

Data model

- Stack architecture
 - No program data beyond stack
- Scheduler: FIFO thread scheduler
- Concurrency manager: manage multiple handler threads to avoid race conditions
 - Threads only allowed to run when all resources are available
 - Reboots when new code arrives to reset all variable
- Capsule store: propagation
 - Selective execution, everyone has code, only some nodes execute it
- Code is trickled to other nodes using version vectors
 - Version packets, capsule status packets, capsure fragments

Evaluation

- Flexibility: Languages: Tinyscript, Motlle, Applications: RegionsVM, QueryVM
- Performance: With 6% of hand coded and 20% energy saving
 - Low overhead
 - Sensor CPU are mostly idle not necessary to be as efficient as the native code