Overview: Chapter 4 (cont)

- Fidelity and Yield in a Volcano Monitoring Sensor Network
 - Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees and Matt Welsh
- VigilNet: An Integrated Sensor Network System for Energy-Efficient Surveillance
 - TIAN HE, SUDHA KRISHNAMURTHY, LIQIAN LUO, TING YAN, LIN GU, RADU STOLERU, GANG ZHOU, QING CAO, PASCAL VICAIRE, JOHN A. STANKOVIC, TAREK F. ABDELZAHER, JONATHAN HUI and BRUCE KROGH

Volcano monitoring...

- Traditional approach: Bulky and sensitive sensors collecting info. into flash drives. Field researchers periodically harvest data
- Volcano sensing required high fidelity and high data rates (compared to other environment monitoring such as temperature).
 - 100 Hz with 24 bit accuracy
 - Design decision to either transmit or capture assuming back-to-back events will be rare

Evaluation

- Overall network uptime
 - Higher for sensors than for the base station. Frequent trips to replace batteries on the sensors. Base stations lost wall-power frequently
- Individual node uptime
 - Safe for durations when they had a bug fairly good
- Event detector accuracy was extremely poor ~1%
 - Hardware limitation
- Data yield and fetch latency affected by design decisions (simultaneous capture and transmit)
- Time synchronization failure some software bugs not seen in lab
 - Time rectification to recover some timing data

Lessons learnt

Ground truth and self-validation are important

Coping with infrastructure and protocol failures

Cross-domain collaboration: science researchers would want the data immediately. Waiting for timer rectication etc. might strain relationship

Vigilnet Applications

Power Consumption: An Important Issue in Surveillance Systems

• No power management \Rightarrow 4 days lifetime!

∨ Power management \Rightarrow 10 months lifetime!

State of the Art: Hardware

Power efficient hardware
 MICA2, MICAz, XSM, etc...

- Vibrations. Roundy et al., "A Study of Low Level Vibrations as a Power Source for Wireless Sensor Network", Computer Communications, 2003.
- θ Sun light. Perpetually powered Telos.

State of the Art: Software

- Synchronization and coordination: Nodes turn on only for specific tasks of which the execution time is known in advance.
- Data aggregation and compression: Nodes reduce amount of transferred data to decrease energy costs.
- Coverage control: Nodes providing redundant sensing coverage are turned off.
- Duty cycle scheduling: Nodes alternate between on and off states at a fast rate, which still allow them to detect slow paced targets.

Power Management in VigilNet

Combination of three schemes in real system.

Putting Nodes Into a Sleep State

 $_{\rm v}$ Putting nodes to sleep as often and as long as possible.

Sleeping mode: node wakeup 1% of the time.

Group Level: Sentry Selection Asleep Awake Sentry selection and rotation. Sentry

v How are the sentries selected?

 Neighbors exchange "hello" message (ID + position + nb of neighbors + energy).

 2. Each node selects a delay according to its energy resources and coverage.

Delay = Function (Energy + Coverage)

 Once the delay is elapsed, a node announces itself as a sentry.

v Tradeoff: detection probability versus density.

Target Detection Probability

Node Level: Duty Cycle Scheduling

v Target takes time to go through the network.

Node Level: Duty Cycle Scheduling

✓ Target takes time to go through the network ⇒ duty cycle scheduling.

Node Level: Duty Cycle Scheduling

v Tradeoff: detection probability versus duty cycle.

v Exploiting knowledge about the target.

v Putting it all together.

Network Level: Tripwire

Seace falling ion defines a tripwire; a node pertains to the tripwire associated with the closest base.

v There are as many tripwires as base stations.

Evaluation Methodology

Evaluation Results: Lifetime

Evaluation Results: Target Detection and Classification

- Average detection delay: 2.42 seconds.
- v Average classification delay: 3.56 seconds.
- Classification of humans, humans with weapons, and vehicles.
- Average delay to get velocity estimation:
 3.75 seconds (average error: 6%).

Summary

- Successfully integrate 3 power management strategies into real surveillance system having a 10 months lifetime (source code available online).
- Analytical model to predict system performance under various system configurations.
- Simulation results exposing tradeoffs between detection performance and lifetime of the network.