
Sep-16-04 CSE 542: Operating Systems 1

Outline
• RacerX: Effective, Static detection of Race

conditions and Deadlocks
– Dawson Engler and Ken Ashcraft

– Summary: Tim Faltemier
– Protagonist: Brett Keck
– Antagonist:Eric Albert

– Standby: Christopher Boehnen



Sep-16-04 CSE 542: Operating Systems 2

Challenges
• Finding errors in large programs (such as Operating

Systems), written by a number of independent
programmers (who may not fully understand the
code) is a hard problem
– For example, programmer may not understand locking

primitives or scope



Sep-16-04 CSE 542: Operating Systems 3

Problem: Detect deadlocks in programs
• Detecting errors are hard

– Compiler options, debug print statements, processor
speed etc. change execution order

– Errors may not manifest immediately
– Errors depend on execution path; depends on hardware

configuration (driver path)
– Language based analysis force coding in same language
– Dynamic tool depends on program execution path (not all

paths are taken)
• Good thing is that we know which paths to analyze

– Invasive instrumentation (can slow down)
– Post mortem log file analysis - less intrusive
– Model checking - formal code verification
– Static analysis - offline analysis, bugs that may not occur



Sep-16-04 CSE 542: Operating Systems 4

Problems
• Annotations help - too much annotations is

cumbersome
• RacerX - only annotation needed is to specify

locking and other primitives
• Static Interprocedural analysis
• Its fast
• Found some errors in Linux, FreeBSD and System

“X”


