
Sep-14-04 CSE 542: Operating Systems 1

Cushing 208 usage….
• One of the machines was compromised while

students were installing the OS
– Sshd exploit to attack machines in Virginia Tech
– Precautions:

• Always use a real root (and other user passwords)
• Lets use XXXXXXXX for the root password
• Turn on the security while installing Linux

Sep-14-04 CSE 542: Operating Systems 2

Outline
• Chapter 7: Process Synchronization

– Critical sections

• Chapter 8: Deadlocks
A set of blocked processes each holding a resource and

waiting to acquire a resource held by another process in
the set

Sep-14-04 CSE 542: Operating Systems 3

Process Synchronization
• Cooperating processes (threads) sharing data can

experience race condition
– Outcome depends on the particular order of execution
– Hard to debug; may never occur during normal runs

Register1 = counter Register2 = counter
Register1 = Register1 + 1 Register2 = Register2 - 1
counter = Register1 counter = Register2

• The final value of the shared data depends upon which
process finishes last.

• To prevent race conditions, concurrent processes must be
synchronized.

Sep-14-04 CSE 542: Operating Systems 4

Critical Section
• n processes all competing to use some shared data
• Each process has a code segment, called critical section, in

which the shared data is accessed.
• Problem – ensure that when one process is executing in its

critical section, no other process is allowed to execute in its
critical section

• Must satisfy the following requirements:
– Mutual Exclusion: Only one process should execute in critical section
– Progress: Scheduling decisions cannot be postponed indefinitely
– Bounded Wait: A bound must exist on the number of times that other

processes are allowed to enter their critical sections after a process
has made a request to enter its critical section and before that
request is granted.

• Remember that synchronization techniques themselves do
not guarantee any particular execution order

Sep-14-04 CSE 542: Operating Systems 5

Approaches
• Software based

– flag[i] = true;
– turn = j
– while (flag[j] && turn == j);
– …..
– flag[i] = false;
– Bakery algorithm for multi-process solution

• Hardware assistance
– Disable interrupts while accessing shared variables

• Works for uniprocessor machines
– TestAndSet and Swap atomic instruction

Sep-14-04 CSE 542: Operating Systems 6

Semaphore
• Wait (or P)

– Decrement semaphore if > 0, else wait
• Signal (or V)

– Increment semaphore
• Counting semaphore – integer value can range over an

unrestricted domain
• Binary semaphore – integer value can range only between 0

and 1; can be simpler to implement
– Also known as mutex locks

• Can implement a counting semaphore S as a binary
semaphore

• Semaphores provide mutual exclusion
• Spinlocks - CPU actively waits wasting CPU resources. One

optimization is to schedule the process to sleep and have
the Signal wake the process. Higher overhead

Sep-14-04 CSE 542: Operating Systems 7

Deadlocks and Starvation
• Starvation – indefinite blocking. A process may

never be removed from the semaphore queue in
which it is suspended
– “Fairness” issue

• Deadlock – two or more processes are waiting
indefinitely for an event that can be caused by only
one of the waiting processes

Sep-14-04 CSE 542: Operating Systems 8

Classical synchronization problems
• Bounded buffer problem

– Producer, consumer problem
– Can solve using semaphores
– E.g. buffer for disk operation in file systems

• Reader-Writers problem
– Many reader, single writer

Sep-14-04 CSE 542: Operating Systems 9

Dining Philosopher problem
• Each process thinks for random intervals, picks up

both forks and eats for random interval. Cannot eat
with one fork

Sep-14-04 CSE 542: Operating Systems 10

Monitors
• Higher level language construct
• Implicitly locks an entire function

• Java synchronized and notify mechanisms

Sep-14-04 CSE 542: Operating Systems 11

Database terminology
• Atomic transaction

– A sequence of operation either “all” happen or none at all
– Either “committed” or “aborted”
– If aborted, transaction is rolled back
– Log based recovery where each operation is logged. On

failure, the log is played back in reverse
• Redo log
• Undo log

– Shared or exclusive
– Growing and shrinking phase

• Serializable atomic transactions
– More later

Sep-14-04 CSE 542: Operating Systems 12

Deadlocks
• Conditions for deadlock:

1. Mutual exclusion: only one process at a time can use a resource.
2. Hold and wait: a process holding at least one resource is waiting

to acquire additional resources held by other processes.
3. No preemption: a resource can be released only voluntarily by the

process holding it, after that process has completed its task.
4. Circular wait: there exists a set {P0, P1, …, P0} of waiting

processes such that P0 is waiting for a resource that is held by P1,
P1 is waiting for a resource that is held by

5. P2, …, Pn–1 is waiting for a resource that is held by
Pn, and P0 is waiting for a resource that is held by P0.

• Deadlock avoidance protocols
– Ensure that the above condition cannot happen simultaneously
– Detection and recovery
– Laissez-faire - typical OS’s assume deadlocks are rare, and

detection and avoidance expensive

Sep-14-04 CSE 542: Operating Systems 13

Deadlock prevention
• Mutual Exclusion

– Some resources are not mutual - read sharing
• Hold and Wait

– Whenever a process requests new resource, it does not
hold other resources

• All resources are requested a-priori
• No preemption
• Circular Wait

– impose a total ordering of all resource types; always
request resources in increasing order

• Bankers algorithm: Don’t give out resources unless
you can satisfy all outstanding requests

• Avoiding deadlocks can lead to low utilization

Sep-14-04 CSE 542: Operating Systems 14

Recovery
• Terminate process

– Abort all deadlocked processes
– Abort one at a time till cycle is eliminated

• Selecting the victim: Number of resources held by
the process

• Rollback transactions: return to some safe state,
restart process for that state.

• Starvation: same process may always be picked as
victim, include number of rollback in cost factor.

