
Sep-7-04 CSE 542: Operating Systems 1

Outline
• ACM Symposium on OS Principles (SOSP) 1991

– Using Continuations to Implement Thread
Management and Communication in Operating Systems
Richard P. Draves, Brian N. Bershad, Richard F. Rashid,
Randall W. Dean

• Reduce kernel thread stack space
– Scheduler Activations: Effective Kernel Support for the

User-Level Management of Parallelism. Thomas E.
Anderson, Brian N. Bershad, Edward D. Lazowska, and
Hank M. Levy

• Cooperative mechanism to enjoy the benefits of user
level and kernel level threads



Sep-7-04 CSE 542: Operating Systems 2

OS/Application threading…
• When a application requests service from the

kernel, the user level process saves its state and
makes a system call into kernel (crossing the
supervisor protection boundary). The question is,
what happens inside the kernel, do you have a
kernel thread per user level threads? What happens
if the kernel thread blocks on page fault
(multiprocessor kernels allow kernels to be paged in)



Sep-7-04 CSE 542: Operating Systems 3

Processing within kernel
• Process model

– Multiple threads within kernel - one kernel stack per thread
– Unique kernel stack - rescheduled and descheduled

transparently (entire state is saved)
– E.g. UNIX
– Easy to use as blocking is transparent
– Cannot optimize unwanted “stack” space (4KB per thread)

• Interrupt model
– Single per-processor stack
– Threads explicitly save state before blocking
– E.g. Quicksilver, V



Sep-7-04 CSE 542: Operating Systems 4

Possible solution
• User level thread - one kernel thread for many user

level threads
– At least need one kernel level thread
– Blocked kernel threads still wasted resources

• Continuations
– Provide code to save state
– Behaves like process model
– Performance of interrupt model
– Allows further optimizations



Sep-7-04 CSE 542: Operating Systems 5

Key idea
• Optimizing Mach 3.0

– Application level representation of state while blocked
– Application code to restore stack
– Optimizations to reduce continuation operations: fast

hand off for RPCs
• Tradeoff stack space for complexity (application code)

• Is this relevant?
– Current processors have lots of memory, so why bother?
– Per processor kernel stack

• reduce cache and TLB misses
• Software engineering concerns?
• Interrupt driven, co-routine style services

– Much current work in MS Research and other places



Sep-7-04 CSE 542: Operating Systems 6



Sep-7-04 CSE 542: Operating Systems 7

User level, Kernel level threads?
• User level threads

– Fast - the kernel does not need to know when there is a switch
– Flexible - each process can use its own scheduler
– Can block - Kernel does not know about the existence of user level

threads
– Question: How many kernel threads to use?

• If you use too little, then you don’t fully use the system and
blocked threads can be a problem

• if you use too much (to protect against blocked threads) then the
OS can schedule kernel threads that have a blocked/idle user
level thread, threads that are in spinlock (while (condition is
false);), priority inversion of user level threads

• Kernel level threads
– Can block - kernel can schedule other kernel level threads
– Slower - protection boundary crossed



Sep-7-04 CSE 542: Operating Systems 8

Scheduler activation
• Cooperative mechanism

– Kernel informs the user process of number of virtual
“processors” as well as change in the number of
processors

– User threads use these processors without informing the
kernel on the scheduling decisions

– Scheduling decision by the user level library + Processor
allocation, blocked thread processing etc by kernel
scheduler activation mechanism

• User thread can request and relinquish virtual
processors

• Upcalls from kernel to application
• System calls from application to kernel


