
page 111/23/04 CSE 542: Graduate Operating Sy stems

Virtual memory

separation of user logical memory from physical
memory
 Only part of the program needs to be in memory for

execution.
 Logical address space can therefore be much larger

than physical address space.
 Allows address spaces to be shared by several

processes.
 Allows for more efficient process creation

page 211/23/04 CSE 542: Graduate Operating Sy stems

Demand Paging

Bring a page into memory only when it is needed.
 Less I/O needed
 Less memory needed
 Faster response
 More users

Page is needed ⇒ reference to it
 invalid reference ⇒ abort
 not-in-memory ⇒ bring to memory

page 311/23/04 CSE 542: Graduate Operating Sy stems

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is
associated
(1 ⇒ in-memory, 0 ⇒ not-in-memory)

 Initially valid–invalid but is set to 0 on all entries.
 Example of a page table snapshot.

 During address translation, if valid–invalid bit in page
table entry is 0 ⇒ page fault.

1
1
1
1
0

0
0

M

Frame # valid-invalid bit

page table

page 411/23/04 CSE 542: Graduate Operating Sy stems

Page Fault

 If there is ever a reference to a page, first reference
will trap to
OS ⇒ page fault

 OS looks at another table to decide:
 Invalid reference ⇒ abort.
 Just not in memory.

 Get empty frame.
 Swap page into frame.
 Reset tables, validation bit = 1.
 Restart instruction: Least Recently Used

 block move

 auto increment/decrement location

page 511/23/04 CSE 542: Graduate Operating Sy stems

What happens if there is no free frame?

Page replacement – find some page in memory,
but not really in use, swap it out
 performance – want an algorithm which will result in

minimum number of page faults.

Same page may be brought into memory several
times.

Page Fault Rate 0 ≤ p ≤ 1.0
 if p = 0 no page faults
 if p = 1, every reference is a fault

page 611/23/04 CSE 542: Graduate Operating Sy stems

Process Creation

 Virtual memory allows other benefits during
process creation:
 Copy-on-Write

 Copy-on-Write (COW) allows both parent and child
processes to initially share the same pages in memory.

 If either process modifies a shared page, only then is the
page copied. COW allows more efficient process creation
as only modified pages are copied

 Memory-Mapped Files
 Memory-mapped file I/O allows file I/O to be treated as

routine memory access by mapping a disk block to a page
in memory

 Simplifies file access by treating file I/O through memory
rather than read() write() system calls

 Also allows several processes to map the same file
allowing the pages in memory to be shared

page 711/23/04 CSE 542: Graduate Operating Sy stems

Page Replacement

Prevent over-allocation of memory by modifying
page-fault service routine to include page
replacement.

Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk.

Page replacement completes separation between
logical memory and physical memory – large
virtual memory can be provided on a smaller
physical memory.

page 811/23/04 CSE 542: Graduate Operating Sy stems

Basic Page Replacement

Find the location of the desired page on disk.

Find a free frame:
- If there is a free frame, use it.
- If there is no free frame, use a page

replacement algorithm to select a victim frame.

Read the desired page into the (newly) free frame.
Update the page and frame tables.

Restart the process.

page 911/23/04 CSE 542: Graduate Operating Sy stems

Page Replacement Algorithms

Want lowest page-fault rate.
Evaluate algorithm by running it on a particular

string of memory references (reference string) and
computing the number of page faults on that string.

 In all our examples, the reference string is
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

page 1011/23/04 CSE 542: Graduate Operating Sy stems

First-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
 3 frames (3 pages can be in memory at a time per

process)

 4 frames

 FIFO Replacement – Belady’s Anomaly
 more frames ⇒ less page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

page 1111/23/04 CSE 542: Graduate Operating Sy stems

FIFO Illustrating Belady’s Anomaly

page 1211/23/04 CSE 542: Graduate Operating Sy stems

Optimal Algorithm

Replace page that will not be used for longest
period of time.

4 frames example
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

How do you know this?
Used for measuring how well your algorithm

performs.

1

2

3

4

6 page faults

4 5

page 1311/23/04 CSE 542: Graduate Operating Sy stems

Least Recently Used (LRU) Algorithm

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Counter implementation
 Every page entry has a counter; every time page is

referenced through this entry, copy the clock into the
counter.

 When a page needs to be changed, look at the counters
to determine which are to change.

1

2

3

5

4

4 3

5

page 1411/23/04 CSE 542: Graduate Operating Sy stems

LRU Algorithm (Cont.)

Stack implementation – keep a stack of page
numbers in a double link form:
 Page referenced:

 move it to the top
 requires 6 pointers to be changed

 No search for replacement

page 1511/23/04 CSE 542: Graduate Operating Sy stems

LRU Approximation Algorithms

Reference bit
 With each page associate a bit, initially = 0
 When page is referenced bit set to 1.
 Replace the one which is 0 (if one exists). We do not

know the order, however.

Second chance
 Need reference bit.
 Clock replacement.
 If page to be replaced (in clock order) has reference bit

= 1. then:
set reference bit 0.
 leave page in memory.
 replace next page (in clock order), subject to same rules.

page 1611/23/04 CSE 542: Graduate Operating Sy stems

Counting Algorithms

Keep a counter of the number of references that
have been made to each page.

LFU Algorithm: replaces page with smallest count.

MFU Algorithm: based on the argument that the
page with the smallest count was probably just
brought in and has yet to be used.

page 1711/23/04 CSE 542: Graduate Operating Sy stems

Thrashing

 If a process does not have “enough” pages, the
page-fault rate is very high. This leads to:
 low CPU utilization.
 operating system thinks that it needs to increase the

degree of multiprogramming.
 another process added to the system.

Thrashing ≡ a process is busy swapping pages in
and out.

page 1811/23/04 CSE 542: Graduate Operating Sy stems

Thrashing

Why does paging work?
Locality model
 Process migrates from one locality to another.
 Localities may overlap.

Why does thrashing occur?
Σ size of locality > total memory size

page 1911/23/04 CSE 542: Graduate Operating Sy stems

Demand Segmentation

Used when insufficient hardware to implement
demand paging.

OS/2 allocates memory in segments, which it
keeps track of through segment descriptors

Segment descriptor contains a valid bit to indicate
whether the segment is currently in memory.
 If segment is in main memory, access continues,
 If not in memory, segment fault.

page 2011/23/04 CSE 542: Graduate Operating Sy stems

Outline

Chapter 18: Protection

Chapter 19: Security

page 2111/23/04 CSE 542: Graduate Operating Sy stems

Protection

 Protect computer resources from being accessed by
processes that should not have access
 Access right: Operations allowed on an object
 Domain: Set of all access rights

 UNIX: domain is userid, setuid bit in file switches domains
 Multics: rings, tasks can get access based on entry points
 Access Matrix defines protection: rows represent domains &

columns represent objects
 Global table
 Access list for objects: easier to program
 Capability list for domains/users:
 Hybrid: lock-key mechanism

 Revocation of rights:
 Immediate vs delayed, selective vs general, partial vs total,

temporary vs permanent

page 2211/23/04 CSE 542: Graduate Operating Sy stems

Revocation

Access List – Delete access rights from access list.
 Simple
 Immediate

Capability List – Scheme required to locate
capability in the system before capability can be
revoked.
 Reacquisition
 Back-pointers
 Indirection
 Keys

page 2311/23/04 CSE 542: Graduate Operating Sy stems

Compiler/language based mechanism

Compiler based enforcement
 Specification of protection in a programming language

allows the high-level description of policies for the
allocation and use of resources

Java VM
 Multiple threads within a single JVM have different

access rights

A class is assigned a protection domain when it is
loaded by the JVM. The protection domain
indicates what operations the class can (and
cannot) perform
 Protection enforced using stack inspection

page 2411/23/04 CSE 542: Graduate Operating Sy stems

Security

Security problem: protection from unauthorized
access, malicious modification or destruction

User authentication:
 Passwords

 Encrypted passwords
– Encrypted form should be secret because attacker can check

offline
 One-time passwords
 Biometrics

Threats:
 Trojan horse
 Trap door/stack and buffer overflow
 Worms/viruses
 Denial of service
 Intrusion and detection

page 2511/23/04 CSE 542: Graduate Operating Sy stems

Risk analysis

 Important to understand threat and perform risk
analysis
 No system is “secure”, systems usually trade security for

performance, ease of use etc.
 If information is worth x and it costs y to break into

system and if (x < y), then not worth encryption
 Wasteful to build a system that is more secure than is

necessary
 Ssh in CSE dept – good

 Palm pilots may not require powerful encryption systems
if they are expected to be physically secure

page 2611/23/04 CSE 542: Graduate Operating Sy stems

Security classification

 U.S. Department of Defense outlines four divisions of
computer security: A, B, C, and D
 D – Minimal security
 C – Provides discretionary protection through auditing. Divided

into C1 and C2. C1 identifies cooperating users with the same
level of protection. C2 allows user-level access control

 B – All the properties of C, however each object may have
unique sensitivity labels. Divided into B1, B2, and B3

 A – Uses formal design and verification techniques to ensure
security

 Windows NT: Configurable security from D to C2
 SuSE Linux Enterprise Server 8 on IBM eServer xSeries -

Evaluation Assurance Level 2+ certification (EAL2)
 http://www.radium.ncsc.mil/tpep/epl/historical.html

page 2711/23/04 CSE 542: Graduate Operating Sy stems

Security Attacks

Social engineering attacks
Preys on people gullibility (good nature), hardest to

defend
E.g. I once got an unlisted number from a telephone

operator because I sounded desperate (I was, but that was
not the point)

E.g. Anna kour*va virus, Nigerian email scam, MS update
scam

E.g. If I walk in with coupla heavy looking boxes into the
elevator to go to Fitz 3rd floor (at night) would you let me in?
You can get into “secure” companies by looking like you
“belong” there

Denial of service attacks
Network flooding, Distributed DOS, holding resources,

viruses

page 2811/23/04 CSE 542: Graduate Operating Sy stems

Common technology - firewalls

Firewalls are used to restrict the kinds of network
traffic in/out of companies
 Application level proxies
 Packet level firewalls

Does not prevent end-to-end security violations
 People sometimes email list of internal computer users

outside firewall to scrupulous “researchers”
 Emails viruses exploit certain vulnerabilities in VBS to

get around firewalls

page 2911/23/04 CSE 542: Graduate Operating Sy stems

Intrusion detection

Detect attempts to intrude into computer systems.

Detection methods:
 Auditing and logging
 Tripwire (UNIX software that checks if certain files and

directories have been altered – I.e. password files)

System call monitoring

