
page 111/9/04 CSE 542: Graduate Operating Sy stems

Outline

 Course project status

 Chapter 17 Distributed Coordination
 Event Ordering: happens before (paper next tuesday)
 Mutual Exclusion
 Atomicity
 Concurrency Control
 Deadlock Handling
 Election Algorithms
 Reaching Agreement - Byzantine generals problem

 Recommended reading: Epidemic algorithms for replicated
database maintenance. Alan Demers, Dan Greene, Carl
Hauser, Wes Irish, John Larson.Proceedings of the sixth
annual ACM Symposium on Principles of distributed
computing, 1987 Pages: 1 - 12

page 211/9/04 CSE 542: Graduate Operating Sy stems

Event Ordering

Notion of concurrent processes and time relations
between processes in various nodes
Dictionary definition:
concurrent adj : occurring or operating at the same time

Distributed systems cannot depend on walk clock
notions of concurrent time

Happened-before relation (denoted by →).
 If A and B are events in the same process, and A was

executed before B, then A → B.
 If A is the event of sending a message by one process

and B is the event of receiving that message by another
process, then A → B.

 If A → B and B → C then A → C.

page 311/9/04 CSE 542: Graduate Operating Sy stems

Relative Time for Three Concurrent Processes

page 411/9/04 CSE 542: Graduate Operating Sy stems

Implementation of →

 Associate a timestamp with each system event. Require that
for every pair of events A and B, if A → B, then the
timestamp of A is less than the timestamp of B.

 Within each process Pi a logical clock, LCi is associated.
The logical clock can be implemented as a simple counter
that is incremented between any two successive events
executed within a process.

 A process advances its logical clock when it receives a
message whose timestamp is greater than the current value
of its logical clock.

 If the timestamps of two events A and B are the same, then
the events are concurrent. We may use the process identity
numbers to break ties and to create a total ordering.

page 511/9/04 CSE 542: Graduate Operating Sy stems

Distributed Mutual Exclusion (DME)

Assumptions
 The system consists of n processes; each process Pi

resides at a different processor
 Each process has a critical section that requires mutual

exclusion

Requirement
 If Pi is executing in its critical section, then no other

process Pj is executing in its critical section.

We present two algorithms to ensure the mutual
exclusion execution of processes in their critical
sections.

page 611/9/04 CSE 542: Graduate Operating Sy stems

DME: Centralized Approach

 One of the processes in the system is chosen to coordinate
the entry to the critical section.

 A process that wants to enter its critical section sends a
request message to the coordinator.

 The coordinator decides which process can enter the critical
section next, and its sends that process a reply message.

 When the process receives a reply message from the
coordinator, it enters its critical section.

 After exiting its critical section, the process sends a release
message to the coordinator and proceeds with its execution.

 This scheme requires three messages per critical-section
entry:
 request
 reply
 release

page 711/9/04 CSE 542: Graduate Operating Sy stems

DME: Fully Distributed Approach

When process Pi wants to enter its critical section,
it generates a new timestamp, TS, and sends the
message request (Pi, TS) to all other processes in
the system.

When process Pj receives a request message, it
may reply immediately or it may defer sending a
reply back.

When process Pi receives a reply message from
all other processes in the system, it can enter its
critical section.

After exiting its critical section, the process sends
reply messages to all its deferred requests.

page 811/9/04 CSE 542: Graduate Operating Sy stems

DME: Fully Distributed Approach
(Cont.)
The decision whether process Pj replies

immediately to a request(Pi, TS) message or
defers its reply is based on three factors:
 If Pj is in its critical section, then it defers its reply to Pi.
 If Pj does not want to enter its critical section, then it

sends a reply immediately to Pi.
 If Pj wants to enter its critical section but has not yet

entered it, then it compares its own request timestamp
with the timestamp TS.
 If its own request timestamp is greater than TS, then it

sends a reply immediately to Pi (Pi asked first).
 Otherwise, the reply is deferred.

page 911/9/04 CSE 542: Graduate Operating Sy stems

Desirable Behavior of Fully Distributed
Approach
Freedom from Deadlock is ensured.
Freedom from starvation is ensured, since entry to

the critical section is scheduled according to the
timestamp ordering. The timestamp ordering
ensures that processes are served in a first-come,
first served order.

The number of messages per critical-section entry
is 2 x (n – 1). This is the minimum number of
required messages per critical-section entry when
processes act independently and concurrently.

page 1011/9/04 CSE 542: Graduate Operating Sy stems

Three Undesirable Consequences

The processes need to know the identity of all
other processes in the system, which makes the
dynamic addition and removal of processes more
complex

 If one of the processes fails, then the entire
scheme collapses. This can be dealt with by
continuously monitoring the state of all the
processes in the system

Processes that have not entered their critical
section must pause frequently to assure other
processes that they intend to enter the critical
section. This protocol is therefore suited for small,
stable sets of cooperating processes.

page 1111/9/04 CSE 542: Graduate Operating Sy stems

Atomicity

Either all the operations associated with a program
unit are executed to completion, or none are
performed

Ensuring atomicity in a distributed system requires
a transaction coordinator, which is responsible for
the following:
 Starting the execution of the transaction.
 Breaking the transaction into a number of

subtransactions, and distribution these subtransactions
to the appropriate sites for execution.

 Coordinating the termination of the transaction, which
may result in the transaction being committed at all sites
or aborted at all sites.

page 1211/9/04 CSE 542: Graduate Operating Sy stems

Two-Phase Commit Protocol (2PC)

Assumes fail-stop model
 Nodes either function fully or die completely

Execution of the protocol is initiated by the
coordinator after the last step of the transaction
has been reached.

When the protocol is initiated, the transaction may
still be executing at some of the local sites.

The protocol involves all the local sites at which
the transaction executed.

Example: Let T be a transaction initiated at site Si
and let the transaction coordinator at Si be Ci.

page 1311/9/04 CSE 542: Graduate Operating Sy stems

Phase 1: Obtaining a Decision

Ci adds <prepare T> record to the log.
Ci sends <prepare T> message to all sites.
When a site receives a <prepare T> message, the

transaction manager determines if it can commit
the transaction.
 If no: add <no T> record to the log and respond to Ci

with <abort T>.
 If yes:

 add <ready T> record to the log.
 force all log records for T onto stable storage.
 transaction manager sends <ready T> message to Ci.

page 1411/9/04 CSE 542: Graduate Operating Sy stems

Phase 1 (Cont.)

Coordinator collects responses
 All respond “ready”, decision is commit.
 At least one response is “abort”, decision is abort.
 At least one participant fails to respond within time out

period, decision is abort.

page 1511/9/04 CSE 542: Graduate Operating Sy stems

Phase 2: Recording Decision in the Database

Coordinator adds a decision record
<abort T> or <commit T>

to its log and forces record onto stable storage

Once that record reaches stable storage it is
irrevocable (even if failures occur)

Coordinator sends a message to each participant
informing it of the decision (commit or abort)

Participants take appropriate action locally

page 1611/9/04 CSE 542: Graduate Operating Sy stems

Failure Handling in 2PC – Site Failure

The log contains a <commit T> record. In this
case, the site executes redo(T).

The log contains an <abort T> record. In this
case, the site executes undo(T).

The contains a <ready T> record; consult Ci. If Ci
is down, site sends query-status T message to
the other sites.

The log contains no control records concerning T.
In this case, the site executes undo(T).

page 1711/9/04 CSE 542: Graduate Operating Sy stems

Failure Handling in 2PC – Coordinator
Ci Failure
 If an active site contains a <commit T> record in

its log, the T must be committed.
 If an active site contains an <abort T> record in its

log, then T must be aborted.
 If some active site does not contain the record

<ready T> in its log then the failed coordinator Ci
cannot have decided to commit T. Rather than
wait for Ci to recover, it is preferable to abort T.

All active sites have a <ready T> record in their
logs, but no additional control records. In this
case we must wait for the coordinator to recover.
 Blocking problem – T is blocked pending the recovery of

site Si

page 1811/9/04 CSE 542: Graduate Operating Sy stems

Concurrency Control

Modify the centralized concurrency schemes to
accommodate the distribution of transactions

Transaction manager coordinates execution of
transactions (or subtransactions) that access data
at local sites

Local transaction only executes at that site

Global transaction executes at several sites.

page 1911/9/04 CSE 542: Graduate Operating Sy stems

Locking Protocols

Can use the two-phase locking protocol in a
distributed environment by changing how the lock
manager is implemented.

Nonreplicated scheme – each site maintains a
local lock manager which administers lock and
unlock requests for those data items that are
stored in that site
 Simple implementation involves two message transfers

for handling lock requests, and one message transfer for
handling unlock requests

 Deadlock handling is more complex

page 2011/9/04 CSE 542: Graduate Operating Sy stems

Single-Coordinator Approach

 A single lock manager resides in a single chosen site, all
lock and unlock requests are made a that site.

 Simple implementation

 Simple deadlock handling

 Possibility of bottleneck

 Vulnerable to loss of concurrency controller if single site fails

 Multiple-coordinator approach distributes lock-manager
function over several sites.

page 2111/9/04 CSE 542: Graduate Operating Sy stems

Majority Protocol

Avoids drawbacks of central control by dealing
with replicated data in a decentralized manner.

More complicated to implement

Deadlock-handling algorithms must be modified;
possible for deadlock to occur in locking only one
data item.

page 2211/9/04 CSE 542: Graduate Operating Sy stems

Biased Protocol

Similar to majority protocol, but requests for
shared locks prioritized over requests for exclusive
locks.

Less overhead on read operations than in majority
protocol; but has additional overhead on writes.

Like majority protocol, deadlock handling is
complex.

page 2311/9/04 CSE 542: Graduate Operating Sy stems

Primary Copy

One of the sites at which a replica resides is
designated as the primary site. Request to lock a
data item is made at the primary site of that data
item.

Concurrency control for replicated data handled in
a manner similar to that of unreplicated data.

Simple implementation, but if primary site fails, the
data item is unavailable, even though other sites
may have a replica.

page 2411/9/04 CSE 542: Graduate Operating Sy stems

Timestamping

Generate unique timestamps in distributed
scheme:
 Each site generates a unique local timestamp.
 The global unique timestamp is obtained by

concatenation of the unique local timestamp with the
unique site identifier

 Use a logical clock defined within each site to ensure the
fair generation of timestamps.

Timestamp-ordering scheme – combine the
centralized concurrency control timestamp
scheme with the 2PC protocol to obtain a protocol
that ensures serializability with no cascading
rollbacks.

page 2511/9/04 CSE 542: Graduate Operating Sy stems

Generation of Unique Timestamps

page 2611/9/04 CSE 542: Graduate Operating Sy stems

Deadlock Prevention

Resource-ordering deadlock-prevention – define a
global ordering among the system resources.
 Assign a unique number to all system resources.
 A process may request a resource with unique number i

only if it is not holding a resource with a unique number
grater than i.

 Simple to implement; requires little overhead.

Banker’s algorithm – designate one of the
processes in the system as the process that
maintains the information necessary to carry out
the Banker’s algorithm
 Also implemented easily, but may require too much

overhead

page 2711/9/04 CSE 542: Graduate Operating Sy stems

Timestamped Deadlock-Prevention
Scheme
Each process Pi is assigned a unique priority

number

Priority numbers are used to decide whether a
process Pi should wait for a process Pj; otherwise
Pi is rolled back.

The scheme prevents deadlocks. For every edge
Pi → Pj in the wait-for graph, Pi has a higher
priority than Pj. Thus a cycle cannot exist.

page 2811/9/04 CSE 542: Graduate Operating Sy stems

Two Local Wait-For Graphs

page 2911/9/04 CSE 542: Graduate Operating Sy stems

Global Wait-For Graph

page 3011/9/04 CSE 542: Graduate Operating Sy stems

Deadlock Detection – Centralized
Approach
 Each site keeps a local wait-for graph. The nodes of the

graph correspond to all the processes that are currently
either holding or requesting any of the resources local to that
site.

 A global wait-for graph is maintained in a single coordination
process; this graph is the union of all local wait-for graphs.

 There are three different options (points in time) when the
wait-for graph may be constructed:
1. Whenever a new edge is inserted or removed in one of the

local wait-for graphs.
2. Periodically, when a number of changes have occurred in a

wait-for graph.
3. Whenever the coordinator needs to invoke the cycle-detection

algorithm..
 Unnecessary rollbacks may occur as a result of false cycles.

page 3111/9/04 CSE 542: Graduate Operating Sy stems

Detection Algorithm Based on Option 3

Append unique identifiers (timestamps) to
requests form different sites.

When process Pi, at site A, requests a resource
from process Pj, at site B, a request message with
timestamp TS is sent.

The edge Pi → Pj with the label TS is inserted in
the local wait-for of A. The edge is inserted in the
local wait-for graph of B only if B has received the
request message and cannot immediately grant
the requested resource.

page 3211/9/04 CSE 542: Graduate Operating Sy stems

The Algorithm

1. The controller sends an initiating message to each
site in the system.

2. On receiving this message, a site sends its local
wait-for graph to the coordinator.

3. When the controller has received a reply from
each site, it constructs a graph as follows:
(a) The constructed graph contains a vertex for every

process in the system.
(b) The graph has an edge Pi → Pj if and only if (1) there is

an edge Pi → Pj in one of the wait-for graphs, or (2) an
edge Pi → Pj with some label TS appears in more than
one wait-for graph.

If the constructed graph contains a cycle ⇒ deadlock.

page 3311/9/04 CSE 542: Graduate Operating Sy stems

Local and Global Wait-For Graphs

page 3411/9/04 CSE 542: Graduate Operating Sy stems

Fully Distributed Approach

All controllers share equally the responsibility for
detecting deadlock.

Every site constructs a wait-for graph that
represents a part of the total graph.

We add one additional node Pex to each local wait-
for graph.

 If a local wait-for graph contains a cycle that does
not involve node Pex, then the system is in a
deadlock state.

A cycle involving Pex implies the possibility of a
deadlock. To ascertain whether a deadlock does
exist, a distributed deadlock-detection algorithm
must be invoked.

page 3511/9/04 CSE 542: Graduate Operating Sy stems

Augmented Local Wait-For Graphs

page 3611/9/04 CSE 542: Graduate Operating Sy stems

Augmented Local Wait-For Graph in Site S2

page 3711/9/04 CSE 542: Graduate Operating Sy stems

Election Algorithms

Determine where a new copy of the coordinator
should be restarted.

Assume that a unique priority number is
associated with each active process in the system,
and assume that the priority number of process Pi
is i.

Assume a one-to-one correspondence between
processes and sites.

The coordinator is always the process with the
largest priority number. When a coordinator fails,
the algorithm must elect that active process with
the largest priority number.

Two algorithms, the bully algorithm and a ring
algorithm, can be used to elect a new coordinator
in case of failures.

page 3811/9/04 CSE 542: Graduate Operating Sy stems

Reaching Agreement

There are applications where a set of processes
wish to agree on a common “value”.

Such agreement may not take place due to:
 Faulty communication medium
 Faulty processes

 Processes may send garbled or incorrect messages to
other processes.

 A subset of the processes may collaborate with each other
in an attempt to defeat the scheme.

page 3911/9/04 CSE 542: Graduate Operating Sy stems

Faulty Communications

Process Pi at site A, has sent a message to
process Pj at site B; to proceed, Pi needs to know
if Pj has received the message.

Detect failures using a time-out scheme.
 When Pi sends out a message, it also specifies a time

interval during which it is willing to wait for an
acknowledgment message form Pj.

 When Pj receives the message, it immediately sends an
acknowledgment to Pi.

 If Pi receives the acknowledgment message within the
specified time interval, it concludes that Pj has received
its message. If a time-out occurs, Pj needs to retransmit
its message and wait for an acknowledgment.

 Continue until Pi either receives an acknowledgment, or
is notified by the system that B is down.

page 4011/9/04 CSE 542: Graduate Operating Sy stems

Faulty Communications (Cont.)

Suppose that Pj also needs to know that Pi has
received its acknowledgment message, in order to
decide on how to proceed.

 In the presence of failure, it is not possible to accomplish
this task.

 It is not possible in a distributed environment for
processes Pi and Pj to agree completely on their
respective states.

page 4111/9/04 CSE 542: Graduate Operating Sy stems

Byzantine generals

 Definition: The problem of reaching a consensus among
distributed units if some of them give misleading answers.
The original problem concerns generals plotting a coup.
Some generals lie about whether they will support a
particular plan and what other generals told them. What
percentage of liars can a decision making algorithm tolerate
and still correctly determine a consensus?

 One variant is: suppose two separated generals will win if
both attack at the same time and lose if either attacks alone,
but messengers may be captured. If one decides to attack,
how can that general be sure that the message has reached
the other general and the other general will attack, too?

page 4211/9/04 CSE 542: Graduate Operating Sy stems

Faulty Processes (Byzantine Generals Problem)

Communication medium is reliable, but processes
can fail in unpredictable ways.

Consider a system of n processes, of which no
more than m are faulty. Suppose that each
process Pi has some private value of Vi.

Devise an algorithm that allows each nonfaulty Pi
to construct a vector Xi = (Ai,1, Ai,2, …, Ai,n) such
that::
 If Pj is a nonfaulty process, then Aij = Vj.
 If Pi and Pj are both nonfaulty processes, then Xi = Xj.

Solutions share the following properties.
 A correct algorithm can be devised only if n ≥ 3 x m + 1.
 The worst-case delay for reaching agreement is

proportionate to m + 1 message-passing delays.

page 4311/9/04 CSE 542: Graduate Operating Sy stems

Faulty Processes (Cont.)

 An algorithm for the case where m = 1 and n = 4 requires
two rounds of information exchange:
 Each process sends its private value to the other 3 processes.
 Each process sends the information it has obtained in the first

round to all other processes.
 If a faulty process refuses to send messages, a nonfaulty

process can choose an arbitrary value and pretend that that
value was sent by that process.

 After the two rounds are completed, a nonfaulty process Pi
can construct its vector Xi = (Ai,1, Ai,2, Ai,3, Ai,4) as follows:
 Ai,j = Vi.
 For j ≠ i, if at least two of the three values reported for process

Pj agree, then the majority value is used to set the value of Aij.
Otherwise, a default value (nil) is used.

