
page 211/9/04 CSE 542: Graduate Operating Sy stems

Outline

Review of distributed systems (cont)

Previous lecture:
 Stateless (NFS) vs Statefull (AFS)

 Block level (traditional NFS) vs File level (traditional
AFS) caching

 Delayed write vs write through policy

page 311/9/04 CSE 542: Graduate Operating Sy stems

File operations and consistency
semantics for AFS
Each client provides a local disk cache
Clients cache entire files (AFS3 allows blocks)

Large files pose problem w/ local cache and initial latency
Clients register call back with server & server

notifies clients on a conflict read-write conflict to
invalidate cache

On close, data is written back to the server (last
writer wins)
Server invalidates all callbacks on write
Read, write are to local cached copy
Open to local cache; if callback not revoked

Directory and symbolic links are also cached in
later versions

AFS uses UNIX calls for cached copies

page 411/9/04 CSE 542: Graduate Operating Sy stems

Write sharing of two files

 Client1 opens file for writing
 If no local copy, fetch a copy V1 from server
 Modify local cached copy

 At this point, client2 opens file for writing
 If no local copy, fetch a copy V1 from server
 Modify local cached copy

 Client1 closes file (V2)
 Server revokes call back on Client2; the next open will not use

cached entry
 Client1 replaces file version in server to V2

 Client 3 opens file for reading
 Fetches a copy V2 from server
 Read local copy

 Client 2 closes file (V3)
 Server revokes call back on Client1 and Client3
 Replaces file version to V4

 Client 3 reads local copy (V2)

page 511/9/04 CSE 542: Graduate Operating Sy stems

Design principles for AFS and Coda

Workstations have cycles to burn - use them
Cache whenever possible
Exploit file usage properties

 Temporary files are not stored in AFS
 Systems files use read-only replication
 Minimize system wide knowledge and change
 Trust the fewest possible entities
 Batch if possible

page 611/9/04 CSE 542: Graduate Operating Sy stems

NFS

 Interconnected workstations viewed as a set of
independent machines with independent file
systems, which allows sharing among these file
systems in a transparent manner.
 A remote directory is mounted over a local file system

directory. The mounted directory looks like an integral
subtree of the local file system, replacing the subtree
descending from the local directory.

 Specification of the remote directory for the mount
operation is nontransparent; the host name of the remote
directory has to be provided. Files in the remote
directory can then be accessed in a transparent manner.

 Subject to access-rights accreditation, potentially any file
system (or directory within a file system), can be
mounted remotely on top of any local directory.

page 711/9/04 CSE 542: Graduate Operating Sy stems

Mounting in NFS

Mounts Cascading mounts

page 811/9/04 CSE 542: Graduate Operating Sy stems

NFS Mount Protocol
 Establishes initial logical connection between server

and client.
 Mount operation includes name of remote directory to

be mounted and name of server machine storing it.
 Mount request is mapped to corresponding RPC and

forwarded to mount server running on server machine.
 Export list – specifies local file systems that server

exports for mounting, along with names of machines
that are permitted to mount them.

 Following a mount request that conforms to its export
list, the server returns a file handle—a key for further
accesses.

 File handle – a file-system identifier, and an inode
number to identify the mounted directory within the
exported file system.

 The mount operation changes only the user’s view
and does not affect the server side.

page 911/9/04 CSE 542: Graduate Operating Sy stems

NFS Protocol

Provides a set of remote procedure calls for
remote file operations. The procedures support
the following operations:
 searching for a file within a directory
 reading a set of directory entries
 manipulating links and directories
 accessing file attributes
 reading and writing files

NFS servers are stateless; each request has to
provide a full set of arguments.

Modified data must be committed to the server’s
disk (write through) before results are returned to
the client (lose advantages of caching).

The NFS protocol does not provide concurrency-
control mechanisms.

page 1011/9/04 CSE 542: Graduate Operating Sy stems

NFS Path-Name Translation

Performed by breaking the path into component
names and performing a separate NFS lookup call
for every pair of component name and directory
vnode
 /usr/homes/surendar/file.txt looks up /, /usr, /usr/homes ..

To make lookup faster, a directory name lookup
cache on the client’s side holds the vnodes for
remote directory names.

page 1111/9/04 CSE 542: Graduate Operating Sy stems

NFS Remote Operations

 Nearly one-to-one correspondence between regular UNIX
system calls and the NFS protocol RPCs (except opening
and closing files)

 NFS adheres to the remote-service paradigm, but employs
buffering and caching techniques for performance
 Stateless server

 File-blocks cache – when a file is opened, the kernel checks
with the remote server whether to fetch or revalidate the
cached attributes. Cached file blocks are used only if the
corresponding cached attributes are up to date. Clients
revalidate every so often (30-60 seconds)

 File-attribute cache – the attribute cache is updated
whenever new attributes arrive from the server

 Clients do not free delayed-write blocks until the server
confirms that the data have been written to disk

page 1211/9/04 CSE 542: Graduate Operating Sy stems

Extra material

Oceanstore: An architecture for Global-Scale
Persistent Storage – University of California,
Berkeley. ASPLOS 2000

Chord

Content Distribution Network

page 1311/9/04 CSE 542: Graduate Operating Sy stems

Content Distribution Networks (slides
courtesy Girish Borkar: Udel)

congested

Not congested

original content

Replica

Replica

Client

page 1411/9/04 CSE 542: Graduate Operating Sy stems

Persistent store

E.g. files (traditional operating systems), persistent
objects (in a object based system)

Applications operate on objects in persistent store
 Powerpoint operates on a persistent .ppt file, mutating its

contents
 Palm calendar operates on my calendar which is

replicated in myYahoo, Palm Desktop and the Pilot itself

Storage is cheap but maintenance is not
~ 500 $/GB (Al Spector @ Transarc/IBM)

page 1511/9/04 CSE 542: Graduate Operating Sy stems

Global Persistent Store

Persistent store is fundamental for future
ubiquitous computing because it allows "devices"
to operate transparently, consistently and reliably
on data.

Transparent: Permits behavior to be independent
of the device themselves

Consistently: Allows users to safely access the
same information from many different devices
simultaneously.

Reliably: Devices can be rebooted or replaced
without losing vital configuration information

page 1611/9/04 CSE 542: Graduate Operating Sy stems

Persistent store on a wide-scale

10 billion users, 10,000 files per user = 100 trillion
files!!

 Information:
 should be separated from location. To achieve uniform

and highly-available access to information, servers must
be geographically distributed, but exploit caching close
to clients for performance

 must be secure
 must be durable
 must be consistent

page 1711/9/04 CSE 542: Graduate Operating Sy stems

Oceanstore system model: Data Utility

IndianaStore

USAStore

Ameritech

CaliforniaStore

SanJoseStore

End User with roaming access

page 1811/9/04 CSE 542: Graduate Operating Sy stems

Oceanstore system model: Data Utility

IndianaStore

USAStore

Ameritech

CaliforniaStore

SanJoseStore

End User with roaming access

page 1911/9/04 CSE 542: Graduate Operating Sy stems

Oceanstore Goals

Untrusted infrastructure (utility model – telephone)
 Only clients can be trusted
 Servers can crash, or leak information to third parties
 Most of the servers are working correctly most of the time
 Class of trusted servers that can carry out protocols on

the clients behalf (financially liable for integrity of data)

Nomadic Data Access
 Data can be cached anywhere, anytime (promiscuous

caching)
 Continuous introspective monitoring to locate data close

to the user

page 2011/9/04 CSE 542: Graduate Operating Sy stems

Oceanstore Persistent Object

 Named by a globally unique id (GUID)
 Such GUIDs are hard to use. If you are expecting

10 trillion files, your GUID will have to be a long
(say 128 bit) ID rather than a simple name
 passwd vs 12agfs237dfdfhj459uxzozfk459ldfnhgga

 self-certifying names
1. secureHash(/id=surendar,ou=ND,key=<SecureKey>/etc/pass

wd) -> uniqueId
2. Map uniqueId->GUID
 Users would use symbolic links for easy usage

 /etc/passwd -> uniqueId

page 2111/9/04 CSE 542: Graduate Operating Sy stems

SecureHash

Pros:
 The self-certifying name specifies my access rights

Cons:
 If I lose the key, the data is lost

 Key management issues
– Keys can be upgraded
– Keys can be revoked

 How do we share data?

page 2211/9/04 CSE 542: Graduate Operating Sy stems

Access Control

All read-shared-users share an encryption key
 Revocation:

 Data should be deleted from all replicas
 Data should be re-encrypted
 New keys should be distributed
 Clients can still access old data till it is deleted in all replicas

All writes are signed
 Validity checked by Access Control Lists (ACLs)
 If A says trust B, B says trust C, C says trust D,
 what can you infer about A ? D

page 2311/9/04 CSE 542: Graduate Operating Sy stems

Oceanstore Persistent Object

Objects are replicated on multiple servers.
Replicated objects are not tied to particular
servers i.e. floating replicas

Replicas located by a probabilistic algorithm first
before using a deterministic algorithm

Data can be active or archival.
 Archival data is read-only and spread over multiple

servers – deep archival storage

page 2411/9/04 CSE 542: Graduate Operating Sy stems

Updates

 Objects are modified through updates (data is
never overwritten) i.e. versioning system

 Application level conflict resolution
 Updates consist of a predicate and value pair. If

a predicate evaluates to true, the corresponding
value is applied.

1. <room 453 free?>, <reserve room>
2. <room 527 free?>, <reserve room>
3. <else> <go to Jittery Joes>

 This is similar to Bayou

page 2511/9/04 CSE 542: Graduate Operating Sy stems

Introspection

Oceanstore uses introspection to monitor system
behavior

Use this information for cluster recognition

Use this information for replica management

