
Sep-23-04 CSE 542: Operating Systems 1

File System Interface (cont)
• Attributes

– Name
– Identifier (internal representation)
– Type (implicit or explicit)
– Location (on the device)
– Size
– Protection
– Time, date and user ID

• Operations: create(), open(), read(), write(), seek(),
delete(), truncate(), sync()

• Directory structure, flat, hierarchical
• Distributed file systems

Sep-23-04 CSE 542: Operating Systems 2

File system implementation
• Mounting: Make file system known in the file space
• Partitions: Logical partitioning of disks
• Virtual file system: Hide underlying disk structure
• Allocation: Contigous

– External fragmentation
– Defrag programs?

• Linked allocation, Indexed allocation. Unix file
system inode interface: direct blocks plus multilevel
hierarchy

• Log structured for crash recovery
• Distributed FS

Sep-23-04 CSE 542: Operating Systems 3

Administrative
• Course project ideas

– You know how to modify kernel parameters.
– Ideal project:

1. First choice: take a significant piece of software code
that you use for your research, run it in your target
machine (no XP), monitor how it is working (whether
it is using as much CPU, disk, memory as you
thought you wanted as a programmer), and try to fix
it. Show that your fix did not break “everything else”
or “why it is okay to break everything else”. Report
your experience

2. Else: Do the same for someone else program.

Sep-23-04 CSE 542: Operating Systems 4

File system trace papers
• A trace-driven analysis of the UNIX 4.2 BSD file

system J. K. Ousterhout, H.D. Costa, D. Harrison,
J.A. Kunze, M. Kupfer, and J.G.Thompson. In Proc.
of the Tenth ACM symposium on 15 Operating
System Principles, Dec. 1985
– Summary: Yingxin, For: Deborah, Against: Kevin

• Measurements of a distributed file system Mary
G. Baker, John H. Hartman, Michael D. Kupfer, Ken
W. Shirriff and John K. Ousterhout, Proceedings of
the thirteenth ACM symposium on Operating
systems principles, 1991
– Summary: David, For: Paul, Against: Philip

Sep-23-04 CSE 542: Operating Systems 5

Trace driven analysis of the UNIX file system
• Rather old, but seminal. Influenced much of file

system design for a long time

• Studies like these are extremely important to
understand how typical users are using a file
system so that you can tune for performance
– Measuring system performance without perturbing the

system is challenging. Drawing the right conclusions
(conclusions which are obvious, not obvious, and correct)
is also challenging.

Sep-23-04 CSE 542: Operating Systems 6

• The key is to trace the “typical user population”.
– Academics do not have access to commercial work loads
– Chicken and Egg syndrome: Users perform certain tasks

because current systems perform poorly.
• E.g. users may backup their work into a separate file

every so often because of poor consistency
guarantees.

• UNIX vi editor saves files by deleting old file, creating a
new file with the same name, writing all the data and
then closing. If the system crashes after creating and
write, before close, data is left in buffers which are lost,
leading to a 0 byte file. It happened a lot and so
programs create backup files often.

Sep-23-04 CSE 542: Operating Systems 7

Important conclusions
• Most files are small; whole file transfer and open for short intervals. Most

files are short lived. Caching really works.
• UNIX used files as intermediate data transfer mechanisms:

– E.g. compiler
• Preprocessor reads .c file -> .i file
• CC1 reads .i -> .asm file and deletes .i file
• Assembler reads .asm -> .o file and deletes .asm file
• Linker reads .o -> executable and deletes .o file

• One solution: Make /tmp an in-memory file system

df /tmp
Filesystem 1k-blocks Used Available Use% Mounted on
swap 1274544 1776 1272768 1% /tmp

Sep-23-04 CSE 542: Operating Systems 8

Most files are read sequentially
• UNIX provides no support for structured files

• Applications that provide structured access (data
bases) use raw file interface and by-pass operating
systems

• Solution:
– Read-ahead to improve performance

Sep-23-04 CSE 542: Operating Systems 9

Most file accesses are to the same directory
• UNIX has a hierarchical file system structure

• Typical academic users compile, word process from
one directory and so all accesses are to a single
directory

• File systems such as Coda, AFS have notions of
volumes, cells that capture this

• Does this apply to Windows?

Sep-23-04 CSE 542: Operating Systems 10

Most files are small
• On a departmental machine with 8 MB of main

memory, what else do you expect

• Is it true now with our Netscape, xemacs, IE, Power
point etc?

• Relatively, it may still be true. On a 60 GB hard
disk, 1 MB file may be “small”

