Outline

- Chapter 10: Virtual Memory
 - Demand Paging
 - Process Creation
 - Page Replacement
 - Allocation of Frames
 - Thrashing
- The robustness of NUMA Memory Management Richard P. LaRowe Jr., Carla Schlatter Ellis and Laurence S. Kaplan 13th SOSP
- Practical, Transparent Operating System Support for Superpages Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan Cox, In Fifth Symposium on Operating Systems Design and Implementation (OSDI 2002)

Virtual memory

- separation of user logical memory from physical memory
 - Only part of the program needs to be in memory for execution
 - Logical address space can therefore be much larger than physical address space
 - Allows address spaces to be shared by several processes
 - Allows for more efficient process creation
- Virtual memory can be implemented via:
 - Demand paging
 - Demand segmentation

Virtual Memory

Sep-30-03

CSE 542: Operating Systems

Demand paging

- Lazy swapper
 - Invalid pages generate page-fault trap
 - OS checks to see if it is indeed illegal
 - If valid, page it in
 - Once disk IO completely, schedule the process and resume execution
 - Performance implications

Process creation

- Copy-on-write
 - Fork model duplicates process. OS shares the same copy and marks the pages invalid for write. Duplicate when any process tries to modify a page (trap to the OS)
- Memory mapped files:
 - Virtual address space is logically associated with a file
- Page replacement:
 - Memory reference string
 - FIFO page replacement
 - Belady's anomaly

Optimal page replacement

- Replace the page that will not be used for the longest period of time
- Approximations
 - FIFO Belady's anamoly
 - Least recently used (LRU)
 - Counters: Update every page access
 - Stack of page numbers used
 - Additional reference bit algorithm
 - Second chance algorithm
 - Enhanced second-chance algorithm:
 - Second chance+reference bit
 - Least Frequently used
 - Most Frequently used
 - Global vs local replacement
- Thrashing

Page rates

- Paging rates affected by code (compiler)
- Locking memory for IO completion

NUMA

- Popular way to build scalable shared memory multiprocessor
- Accesses to memory is not equal page placement is important

OS vs application page placement

- Applications know best
- OS techniques can be leveraged by many applications
- How good are the tuneable page placement policies for a NUMA machine
 - Too few migrations: pay remote access cost
 - Too many migrations: pay page movement overhead
- Tradeoff local access for page movement
- Show that the policies are robust a general setting applicable to a number of different scenarios

Superpages

- Increasing cost in TLB miss overhead
 - growing working sets
 - TLB size does not grow at same pace
- Processors now provide superpages
 one TLB entry can map a large region
- OSs have been slow to harness them
 - no transparent superpage support for apps

TLB coverage trend

TLB coverage as percentage of main memory

Why multiple superpage sizes

Improvements with only one superpage size vs. all sizes

	64KB	512KB	4MB	All
FFT	1%	0%	55%	55%
galgel	28%	28%	1%	29%
mcf	24%	31%	22%	68%

Issue 1: superpage allocation

• How / when / what size to allocate?

Issue 2: promotion

- Promotion: create a superpage out of a set of smaller pages
 - mark page table entry of each base page
- When to promote?

Issue 3: demotion

- Demotion: convert a superpage into smaller pages
- when page attributes of base pages of a superpage become non-uniform
- during partial pageouts

Issue 4: fragmentation

- Memory becomes fragmented due to
 - use of multiple page sizes
 - persistence of file cache pages
 - scattered wired (non-pageable) pages
- Contiguity: contended resource
- OS must
 - use contiguity restoration techniques
 - trade off impact of contiguity restoration against superpage benefits

