
Sep-18-03 CSE 542: Operating Systems 1

Outline

• Chapter 9: Memory management
– Swapping

– Contiguous Allocation

– Paging

– Segmentation

– Segmentation with Paging

• Chapter 10: Virtual Memory
– Demand Paging

– Process Creation

– Page Replacement

– Allocation of Frames

– Thrashing

Sep-18-03 CSE 542: Operating Systems 2

Virtual Memory

• Address binding:
– Compile time - must recompile if starting memory addr

changes (MS Dos .com file)

– Load time (relocatable)

– Execution time: H/w support needed

• Logical and Physical address
– Process sees logical addresses, processor sees physical

addr

– MMU for run time mapping of virtual to physical address

Sep-18-03 CSE 542: Operating Systems 3

Dynamic loading

• Routine is not loaded until it is called

• Better memory-space utilization; unused routine is
never loaded.

• Useful when large amounts of code are needed to
handle infrequently occurring cases.

• No special support from the operating system is
required implemented through program design

Sep-18-03 CSE 542: Operating Systems 4

Dynamic linking

• Linking postponed until execution time.

• Small piece of code, stub, used to locate the
appropriate memory-resident library routine.

• Stub replaces itself with the address of the routine,
and executes the routine.

• Operating system needed to check if routine is in
processes’ memory address.

• Dynamic linking is particularly useful for libraries.

Sep-18-03 CSE 542: Operating Systems 5

Swapping

• A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for
continued execution

• Backing store – fast disk large enough to accommodate
copies of all memory images for all users; must provide direct
access to these memory images

• Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out
so higher-priority process can be loaded and executed

• Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped

• Modified versions of swapping are found on many systems,
i.e., UNIX, Linux, and Windows

Sep-18-03 CSE 542: Operating Systems 6

Hardware support for relocation and limit reg.

Sep-18-03 CSE 542: Operating Systems 7

Contigous allocation

• First-fit: Allocate the first hole that is big enough.

• Best-fit: Allocate the smallest hole that is big
enough; must search entire list, unless ordered by
size. Produces the smallest leftover hole.

• Worst-fit: Allocate the largest hole; must also
search entire list. Produces the largest leftover hole.

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

Sep-18-03 CSE 542: Operating Systems 8

Fragmentation

• External Fragmentation – total memory space exists to
satisfy a request, but it is not contiguous

• Internal Fragmentation – allocated memory may be slightly
larger than requested memory; this size difference is memory
internal to a partition, but not being used

• Reduce external fragmentation by compaction
– Shuffle memory contents to place all free memory together in one

large block

– Compaction is possible only if relocation is dynamic, and is done at
execution time

– I/O problem

• Latch job in memory while it is involved in I/O

• Do I/O only into OS buffers

Sep-18-03 CSE 542: Operating Systems 9

Paging

• Allows process physical page to be non-contiguous
– Avoid fragmentation

– Physical memory is broken into frames (h/w)

– Logical memory is broken into pages (h/w)

– Every address consists of page number and page offset.
Page number is used as an index into page table

Sep-18-03 CSE 542: Operating Systems 10

Page table implementation

• Page table is kept in main memory
• Page-table base register (PTBR) points to the page

table
• Page-table length register (PRLR) indicates size of

the page table
• In this scheme every data/instruction access

requires two memory accesses. One for the page
table and one for the data/instruction

• The two memory access problem can be solved by
the use of a special fast-lookup hardware cache
called associative memory or translation look-aside
buffers (TLBs)

Sep-18-03 CSE 542: Operating Systems 11

TLB

Sep-18-03 CSE 542: Operating Systems 12

Memory Protection

• Memory protection implemented by associating
protection bit with each frame.

• Valid-invalid bit attached to each entry in the page
table:
– “valid” indicates that the associated page is in the process’

logical address space, and is thus a legal page.

– “invalid” indicates that the page is not in the process’
logical address space

Sep-18-03 CSE 542: Operating Systems 13

Page table structure

• Hierarchical Paging
– Break up the logical address space into multiple page tables

• Hashed Page Tables
– The virtual page number is hashed into a page table. This page table

contains a chain of elements hashing to the same location. Virtual
page numbers are compared in this chain searching for a match. If a
match is found, the corresponding physical frame is extracted

• Inverted Page Tables
– One entry for each real page of memory; entry consists of the virtual

address of the page stored in that real memory location, with
information about the process that owns that page

– Decreases memory needed to store each page table, but increases
time needed to search the table when a page reference occurs

Sep-18-03 CSE 542: Operating Systems 14

Segmentation
• Memory-management scheme that supports user view of

memory.
• A program is a collection of segments. A segment is a logical

unit such as:
main program,

procedure,
function,
method,
object,
local variables, global variables,
common block,
stack,
symbol table, arrays

Sep-18-03 CSE 542: Operating Systems 15

Virtual memory

• separation of user logical memory from physical
memory
– Only part of the program needs to be in memory for

execution

– Logical address space can therefore be much larger than
physical address space

– Allows address spaces to be shared by several processes

– Allows for more efficient process creation

• Virtual memory can be implemented via:
– Demand paging

– Demand segmentation

Sep-18-03 CSE 542: Operating Systems 16

Virtual Memory

Sep-18-03 CSE 542: Operating Systems 17

Demand paging

• Lazy swapper
– Invalid pages generate page-fault trap

– OS checks to see if it is indeed illegal

• If valid, page it in

– Once disk IO completely, schedule the process and
resume execution

– Performance implications

Sep-18-03 CSE 542: Operating Systems 18

Process creation

• Copy-on-write
– Fork model duplicates process. OS shares the same copy

and marks the pages invalid for write. Duplicate when any
process tries to modify a page (trap to the OS)

• Memory mapped files:
– Virtual address space is logically associated with a file

• Page replacement:
– Memory reference string

– FIFO page replacement

• Belady’s anomaly

Sep-18-03 CSE 542: Operating Systems 19

Optimal page replacement
• Replace the page that will not be used for the longest period

of time
• Approximations

– FIFO - Belady’s anamoly
– Least recently used (LRU)

• Counters: Update every page access
• Stack of page numbers used
• Additional reference bit algorithm
• Second chance algorithm
• Enhanced second-chance algorithm:

– Second chance+reference bit

– Least Frequently used
– Most Frequently used
– Global vs local replacement

• Thrashing

Sep-18-03 CSE 542: Operating Systems 20

Page rates

• Paging rates affected by code (compiler)

• Locking memory for IO completion

