
Thread types

- Continuum: Cost to create and ease of management
- User level threads (e.g. pthreads)
 - Implemented as a library
 - Fast to create
 - Cannot have blocking system calls
 - Scheduling conflicts between kernel and threads. User level threads cannot do anything is kernel preempts the process
- Kernel level threads
 - Slower to create and manage
 - Blocking system calls are no problem
 - Most OS's support these threads

Threading models

- One to One model
 - Map each user thread to one kernel thread
- Many to one model
 - Map many user threads to a single kernel thread
 - Cannot exploit multiprocessors
- Many to many
 - Map m user threads to n kernel threads

Threading Issues:

- Cancellation:
 - Asynchronous or deferred cancellation
- Signal handling:
 - Relevant thread
 - Every thread
 - Certain threads
 - Specific thread
- Pooled threads (web server)
- Thread specific data

Threads – Andrew Birrell

- Seminal paper on threads programming
 - Old but most techniques/experiences are still valid
- Birrell
 - Xerox PARC□ Dec SRC □ Microsoft Research
 - Invented Remote Procedure Calls (RPC)
 - Personal Juke box (hard disk based mp3 Apple iPOD?)
 - Worked on Cedar, Distributed FS etc for ~25 years (1977-

Threads – Andrew Birrell

- Dec SRC and Xerox PARC were the premium systems research labs
- PARC researchers invented:
 - Personal computers Alto
 - Mouse
 - Windows Star
 - Bitmapped terminals
 - Icons
 - Ethernet
 - Smalltalk
 - Bravo first WYSIWYG program
 - Laser printer

— ...

Windows 2000

indows Task Mana	ager								
e Options View Help									
pplications Processes	Perform	ance							
Image Name	PID	CPU	CPU Time	Mem Usage	Base Pri	Threads			
System Idle Process	0	99	73:39:58	16 K	N/A	1			
System	8	00	0:01:18	28 K	Normal	38			
smss.exe	164	00	0:00:00	32 K	High	6			
winlogon.exe	184	00	0:00:03	448 K	High	16			
csrss.exe	188	00	0:00:44	216 K	High	10			
services.exe	236	00	0:00:58	3,792 K	Above Normal	31			
Isass.exe	248	00	0:00:01	1,008 K	Above Normal	13			
ntvdm.exe	276	00	0:00:03	36 K	Normal	3			
SynTPLpr.exe	324	00	0:00:00	176 K	Normal	3			
svchost.exe	416	00	0:00:02	2,392 K	Normal	8			
spoolsv.exe	444	00	0:00:00	2,112 K	Normal	14			
Ati2evxx.exe	472	00	0:00:00	232 K	Normal	2			
svchost.exe	544	00	0:00:08	4,620 K	Normal	27			

Wizard 'ps -cfLeP' output

UID	PID	PPID	LWP	PSR	NLWI	P CLS	PRI	STIME	TTY	LTIME CMD
root	0	0	1	_	1	SYS	96	Aug 03	?	0:01 sched
root	1	0	1	_	1	TS	59	Aug 03	?	7:12 /etc/init -
root	2	0	1	_	1	SYS	98	Aug 03	?	0:00 pageout
root	3	0	1	-	1	SYS	60	Aug 03	?	275:46 fsflush
root	477	352	1	-	1	IA	59	Aug 03	??	0:0
								/usr/	open/	win/bin/fbconsole -d :0
root	62	1	14	-	14	TS	59	Aug 04	?	0:00
	/usr/lib/sysevent/sysevento								/lib/sysevent/syseventd	

Discussion

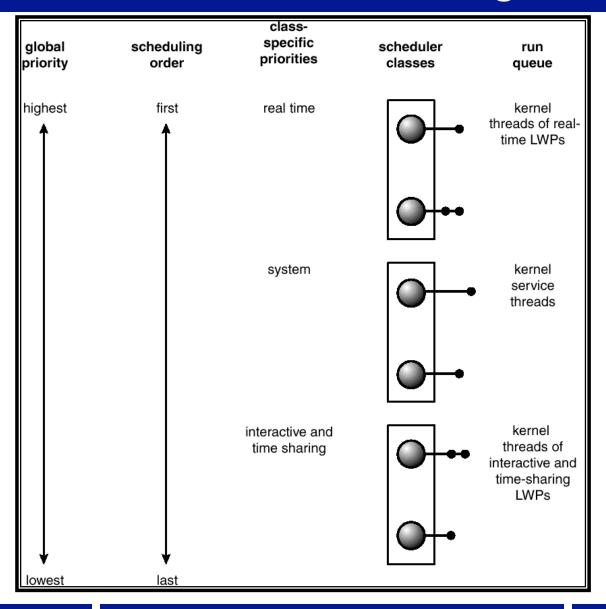
- Constant tension between moving functionality to upper layers; involving the application programmer and performing automatically at the lower layers
- Automatically create/manage threads by compiler/ system? (open research question)

CPU Scheduler

- Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them.
- CPU scheduling decisions may take place when a process:
 - 1. Switches from running to waiting state.
 - 2. Switches from running to ready state.
 - 3. Switches from waiting to ready.
 - 4. Terminates.
- Scheduling under 1 and 4 is nonpreemptive.
- All other scheduling is preemptive.

Scheduling Criteria

- CPU utilization keep the CPU as busy as possible
- Throughput # of processes that complete their execution per time unit
- Turnaround time amount of time to execute a particular process
- Waiting time amount of time a process has been waiting in the ready queue
- Response time amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)



CPU Scheduling - Classical algorithms

- First come, first served (FCFS)
 - Convoy effect (all processes get bunched up behind long process)
- Shortest job first (shortest next CPU burst)
 - "Optimal".
 - Need oracle to predict next duration: prediction based on history
- Priority: Choose higher priority tasks
 - Priority inversion: High priority tasks wait for lower priority tasks holding critical resources
 - Starvation: Low priority tasks never get their chance
- Round robin
- Multilevel queue: Different schemes for background, interactive tasks
- Multilevel feedback queue scheduling
- Multiprocessor scheduling
 - Gang scheduling, Non Uniform Memory Access, Processor affinity
- Real-Time scheduling
 - Hard and soft real time systems

Solaris 2 Scheduling

Windows 2000 Priorities

	real- time	high	above normal	normal	below normal	idle priority
time-critical	31	15	15	15	15	15
highest	26	15	12	10	8	6
above normal	25	14	11	9	7	5
normal	24	13	10	8	6	4
below normal	23	12	9	7	5	3
lowest	22	11	8	6	4	2
idle	16	1	1	1	1	1

Tools to play with

- FreeBSD: rtprio, idprio
- Windows XP: Task manager
- Solaris: prioctl
- UNIX: nice, renice, setpriority, ps, top
- Procfs a pseudo file system for process stats
 - Look at files in /proc/curproc in FreeBSD, /proc in Linux,
 /proc in Solaris

