Application Interface

« Unstructured
— MS Dos
 Eventdriven
— PalmOS
» File system based
— UNIX, Plan 9
* Object oriented
— Hydra, OPAL
« Distributed OS
— Amoeba
 Realtime
— QNX
« Single Address Space OS (SASOS)
— OPAL

. _1_ Sep-2-03 CSE 542: Operating Systems _

* Chapter 4: Processes
« Chapter 5: Threads

* |[ntroduction to Threads: Birrell

. _1_ Sep-2-03 CSE 542: Operating Systems _

Processes

* Process is a program in execution
— Program code
— Data section
— Execution context: Program counter, registers, stack

* Process has thread(s) of control

* Many processes “run” concurrently: Process
scheduling

— Fair allocation of CPU and |I/O bound processes
» Context switch

Sep-2-03 CSE 542: Operating Systems

Process States
e admitted interrupt exit

scheduler dispatch
/O or event completion /O or event wait

Sep-2-03 CSE 542: Operating Systems 4

Process Control Block

pointer

pProcess
state

process number

program counter

registers

memory limits

list of open files

Process context switch

process P, operating system process P,

interrupt or system call

executing I / l

save state into PCB0

L]

.

reload state from PCB1

interrupt or system call

' T

save state into PCB1

.

L]

L]

reload state from PCB0

Process creation

« Creating new processes is expensive
— Resource allocation issue

 Fork mechanism: UNIX, Windows NT

— Duplicate the parent process
— Shares file descriptors, memory is copied
— Exec to create different process
— Various optimizations to avoid copying the entire parent
context (Copy on write (COW), etc..)
 Exec mechanism: VMS, Windows NT
— New process is specifically loaded

. _1_ Sep-2-03 CSE 542: Operating Systems

Interprocess communication

* Processes need to communicate with each other
— Naming
— Message-passing
* Direct (to process) or indirect (port, mailbox)
« Symmetric or asymmetric (blocking, nonblocking)
« Automatic or explicit buffering (capacity)
« Send by copy or reference
 Fixed size or variable size messages
— Shared memory/mutexes
— Remote Procedure Call (RPC/RMI)

« Bounded buffer problem

. _1_ Sep-2-03 CSE 542: Operating Systems _

CPU scheduling

 |Interleave processes so as to maximize utilization of
CPU and I/O resources

« Scheduler should be fast as time spent in scheduler
Is wasted time
— Switching context (h/w assists — register windows [sparc])
— Switching to user mode
— Jumping to proper location
* Preemptive scheduling:
— Process could be in the middle of an operation
— Especially bad for kernel structures
* Non-preemptive (cooperative) scheduling:
— Starvation

. _1_ Sep-2-03 CSE 542: Operating Systems _

* Applications require concurrency. Threads provide a
neat abstraction to specify concurrency

* E.g. word processor application

— Needs to accept user input, display it on screen, spell
check and grammar check

— Implicit: Write code that reads user input, displays/formats
it on screen, calls spell checked etc. while making sure
that interactive response does not suffer. May or may not
leverage multiple processors

— Threads: Use threads to perform each task and
communicate using queues and shared data structures

— Processes: expensive to create and do not share data
structures and so explicitly passed

. _1_ Sep-2-03 CSE 542: Operating Systems n

Threaded application

code code data files

registers registers registers registers

stack stack stack

single-threaded multithreaded

Sep-2-03 CSE 542: Operating Systems 11

Threads - Benefits

* Responsiveness
— If one “task” takes too long, other “tasks” can still proceed

* Resource sharing:
— Grammar checker can check the buffer as it is being typed

* Economy:
— Process creation is expensive (spell checker)

Utilization of multiprocessor architectures:

— If we had four processors (say), the word processor can
fully leverage them

Pitfalls:

— Shared data should be protected or results are undefined
« Race conditions, dead locks, starvation (more later)

. _1_ Sep-2-03 CSE 542: Operating Systems n

Thread types

« Continuum: Cost to create and ease of management

« User level threads (e.g. pthreads)
— Implemented as a library
— Fast to create
— Cannot have blocking system calls

— Scheduling conflicts between kernel and threads. User
level threads cannot do anything is kernel preempts the
process

« Kernel level threads
— Slower to create and manage
— Blocking system calls are no problem
— Most OS’s support these threads

. _1_ Sep-2-03 CSE 542: Operating Systems

Threading models

* One to One model
— Map each user thread to one kernel thread

 Many to one model

— Map many user threads to a single kernel
thread

— Cannot exploit multiprocessors

 Many to many
— Map m user threads to n kernel threads

<+

kernel threa
. _1_ Sep-2-03 CSE 542: Operating Systems n

Threading Issues:

« Cancellation:

— Asynchronous or deferred cancellation
 Signal handling:

— Relevant thread

— Every thread

— Certain threads
— Specific thread

* Pooled threads (web server)
* Thread specific data

. _1_ Sep-2-03 CSE 542: Operating Systems m

Threads — Andrew Birrell

« Seminal paper on threads programming
— Old but most techniques/experiences are still valid

* Birrell
— Xerox PARC—Dec SRC —Microsoft Research
— Invented Remote Procedure Calls (RPC)
— Personal Juke box (hard disk based mp3 — Apple iPOD?)
— Worked on Cedar, Distributed FS etc for ~25 years (1977-

. _1_ Sep-2-03 CSE 542: Operating Systems m

Threads — Andrew Birrell

 Dec SRC and Xerox PARC were the premium
systems research labs

 PARC researchers invented:
— Personal computers - Alto
— Mouse
— Windows - Star
— Bitmapped terminals
— lcons
— Ethernet
— Smalltalk
— Bravo — first WYSIWYG program
— Laser printer

. _1_ Sep-2-03 CSE 542: Operating Systems

Windows 2000

EJ windows Task Manager

File ©ptions Yiew Help

Applications Processes |F‘erFDrmancE|

Image Mame | FID I _PLI I ZPU Time I Mem Usage | Base Pri I Threads |
System Idle Process a 99 Fc st 16K M 1
Swskem o oo 0:01:15 28 K Mormal K
SMSS. BXE 164 oo 0:00:00 32K High 2]
winlogon, exe 1584 00 0:00:03 443 K High 16
CSF55,BXE 138 oo 0:00:44 216K High 10
SEFVICES, EXE 236 00 0:00:55 3,792 K above Mormal 31
lsass, exe 245 00 00001 1,005 K Above Mormal 13
nkwdm. exe 276 00 0:00:03 36K Marmal 3
vnTPLpr.exe 324 oo 0:00:00 176 K Maormal 3
aychosk, exe 416 00 0:00:02 2,392 K Morrmal a
sponlsy, exe 444 00 Q: 0000 H11ZK Maormal 14
AliZevxy.exe 472 oo 0:00:00 232K Mormal 2
sychaosk, exe 544 00 0:00:08 4,620 K Maormal 27

S ST T

Wizard ‘ps -cfLeP’ output

UID PID PPID LWP PSR NLWP CLS PRI STIME TTY LTIME CMD

root 0 0 1 - 1 SYs 96 Aug 03 ? 0:01 sched

root 1 0 1 - 1 TS 59 Aug 03 2 7:12 /etc/init -
root 2 0 1 - 1 SyYys 98 Aug 03 ? 0:00 pageout
root 3 0 1 - 1 SYS 60 Aug 03 ? 275:46 fsflush

root 477 352 1 - 1 IA 59 Aug 03 2?7 0:0
/usr/openwin/bin/fbconsole -d :0
root 62 1 14 - 14 TS 59 Aug 04 2 0:00

/usr/lib/sysevent/syseventd

S ST T

« Constant tension between moving functionality to
upper layers; involving the application programmer
and performing automatically at the lower layers

« Automatically create/manage threads by compiler/
system? (open research question)

. _1_ Sep-2-03 CSE 542: Operating Systems m

