
Sep-2-03 CSE 542: Operating Systems 1

Application Interface
• Unstructured

– MS Dos

• Event driven
– PalmOS

• File system based
– UNIX, Plan 9

• Object oriented
– Hydra, OPAL

• Distributed OS
– Amoeba

• Real time
– QNX

• Single Address Space OS (SASOS)
– OPAL

Sep-2-03 CSE 542: Operating Systems 2

Outline

• Chapter 4: Processes

• Chapter 5: Threads

• Introduction to Threads: Birrell

Sep-2-03 CSE 542: Operating Systems 3

Processes

• Process is a program in execution
– Program code
– Data section
– Execution context: Program counter, registers, stack

• Process has thread(s) of control
• Many processes “run” concurrently: Process

scheduling
– Fair allocation of CPU and I/O bound processes

• Context switch

Sep-2-03 CSE 542: Operating Systems 4

Process States

Sep-2-03 CSE 542: Operating Systems 5

Process Control Block

Sep-2-03 CSE 542: Operating Systems 6

Process context switch

Sep-2-03 CSE 542: Operating Systems 7

Process creation

• Creating new processes is expensive
– Resource allocation issue

• Fork mechanism: UNIX, Windows NT
– Duplicate the parent process

– Shares file descriptors, memory is copied

– Exec to create different process

– Various optimizations to avoid copying the entire parent
context (Copy on write (COW), etc..)

• Exec mechanism: VMS, Windows NT
– New process is specifically loaded

Sep-2-03 CSE 542: Operating Systems 8

Interprocess communication

• Processes need to communicate with each other
– Naming

– Message-passing

• Direct (to process) or indirect (port, mailbox)

• Symmetric or asymmetric (blocking, nonblocking)

• Automatic or explicit buffering (capacity)

• Send by copy or reference

• Fixed size or variable size messages

– Shared memory/mutexes

– Remote Procedure Call (RPC/RMI)

• Bounded buffer problem

Sep-2-03 CSE 542: Operating Systems 9

CPU scheduling

• Interleave processes so as to maximize utilization of
CPU and I/O resources

• Scheduler should be fast as time spent in scheduler
is wasted time
– Switching context (h/w assists – register windows [sparc])
– Switching to user mode
– Jumping to proper location

• Preemptive scheduling:
– Process could be in the middle of an operation
– Especially bad for kernel structures

• Non-preemptive (cooperative) scheduling:
– Starvation

Sep-2-03 CSE 542: Operating Systems 10

Threads

• Applications require concurrency. Threads provide a
neat abstraction to specify concurrency

• E.g. word processor application
– Needs to accept user input, display it on screen, spell

check and grammar check

– Implicit: Write code that reads user input, displays/formats
it on screen, calls spell checked etc. while making sure
that interactive response does not suffer. May or may not
leverage multiple processors

– Threads: Use threads to perform each task and
communicate using queues and shared data structures

– Processes: expensive to create and do not share data
structures and so explicitly passed

Sep-2-03 CSE 542: Operating Systems 11

Threaded application

Sep-2-03 CSE 542: Operating Systems 12

Threads - Benefits

• Responsiveness
– If one “task” takes too long, other “tasks” can still proceed

• Resource sharing:
– Grammar checker can check the buffer as it is being typed

• Economy:
– Process creation is expensive (spell checker)

• Utilization of multiprocessor architectures:
– If we had four processors (say), the word processor can

fully leverage them

• Pitfalls:
– Shared data should be protected or results are undefined

• Race conditions, dead locks, starvation (more later)

Sep-2-03 CSE 542: Operating Systems 13

Thread types

• Continuum: Cost to create and ease of management

• User level threads (e.g. pthreads)
– Implemented as a library

– Fast to create

– Cannot have blocking system calls

– Scheduling conflicts between kernel and threads. User
level threads cannot do anything is kernel preempts the
process

• Kernel level threads
– Slower to create and manage

– Blocking system calls are no problem

– Most OS’s support these threads

Sep-2-03 CSE 542: Operating Systems 14

Threading models

• One to One model
– Map each user thread to one kernel thread

• Many to one model
– Map many user threads to a single kernel

thread

– Cannot exploit multiprocessors

• Many to many
– Map m user threads to n kernel threads

Sep-2-03 CSE 542: Operating Systems 15

Threading Issues:

• Cancellation:
– Asynchronous or deferred cancellation

• Signal handling:
– Relevant thread

– Every thread

– Certain threads

– Specific thread

• Pooled threads (web server)

• Thread specific data

Sep-2-03 CSE 542: Operating Systems 16

Threads – Andrew Birrell

• Seminal paper on threads programming
– Old but most techniques/experiences are still valid

• Birrell
– Xerox PARCÆDec SRC ÆMicrosoft Research

– Invented Remote Procedure Calls (RPC)

– Personal Juke box (hard disk based mp3 – Apple iPOD?)

– Worked on Cedar, Distributed FS etc for ~25 years (1977-

Sep-2-03 CSE 542: Operating Systems 17

Threads – Andrew Birrell

• Dec SRC and Xerox PARC were the premium
systems research labs

• PARC researchers invented:
– Personal computers - Alto
– Mouse
– Windows - Star
– Bitmapped terminals
– Icons
– Ethernet
– Smalltalk
– Bravo – first WYSIWYG program
– Laser printer
– …

Sep-2-03 CSE 542: Operating Systems 18

Windows 2000

Sep-2-03 CSE 542: Operating Systems 19

Wizard ‘ps -cfLeP’ output

 UID PID PPID LWP PSR NLWP CLS PRI STIME TTY LTIME CMD
 root 0 0 1 - 1 SYS 96 Aug 03 ? 0:01 sched

 root 1 0 1 - 1 TS 59 Aug 03 ? 7:12 /etc/init -

 root 2 0 1 - 1 SYS 98 Aug 03 ? 0:00 pageout

 root 3 0 1 - 1 SYS 60 Aug 03 ? 275:46 fsflush

 root 477 352 1 - 1 IA 59 Aug 03 ?? 0:0
/usr/openwin/bin/fbconsole -d :0

 root 62 1 14 - 14 TS 59 Aug 04 ? 0:00

 /usr/lib/sysevent/syseventd

Sep-2-03 CSE 542: Operating Systems 20

Discussion

• Constant tension between moving functionality to
upper layers; involving the application programmer
and performing automatically at the lower layers

• Automatically create/manage threads by compiler/
system? (open research question)

