
Nov-20-03 CSE 542: Operating Systems 1

Role of Operating System

• Operating systems are designed to provide uniform
abstraction across multiple applications: fair sharing
of resources

• General purpose OS like Solaris in
wizard.cse.nd.edu
– Mail, web, samba server, telnet, emacs …

– Memory fs, afs, ufs …

– Fibre channel devices, floppy disks …

• What about applications/services such as video
games, data base servers, mail servers
– OS gets in the way of these applications in the name of

fairness (MSDOS is the ideal OS!!)

Nov-20-03 CSE 542: Operating Systems 2

What is the role of OS?

• Create multiple virtual machines that each user can
control all to themselves
– IBM 360/370 …

• Monolithic kernel: Linux
– One kernel provides all services.
– New paradigms are harder to implement
– May not be optimal for any one application

• Microkernel: Mach
– Microkernel provides minimal service
– Application servers provide OS functionality

• Nanokernel: OS is implemented as application level
libraries

Nov-20-03 CSE 542: Operating Systems 3

Case study: Multics

• Goal: Develop a convenient, interactive, useable
time shared computer system that could support
many users.
– Bell Labs and GE in 1965 joined an effort underway at MIT

(CTSS) on Multics (Multiplexed Information and
Computing Service) mainframe timesharing system.

• Multics was designed to the swiss army knife of OS

• Multics achieved most of the these goals, but it took
a long time
– One of the negative contribution was the development of

simple yet powerful abstractions (UNIX)

Nov-20-03 CSE 542: Operating Systems 4

Multics: Designed to be the ultimate OS
• “One of the overall design goals is to create a computing

system which is capable of meeting almost all of the present
and near-future requirements of a large computer utility. Such
systems must run continuously and reliably 7 days a week,
24 hours a day in a way similar to telephone or power
systems, and must be capable of meeting wide service
demands: from multiple man-machine interaction to the
sequential processing of absentee-user jobs; from the use of
the system with dedicated languages and subsystems to the
programming of the system itself; and from centralized bulk
card, tape, and printer facilities to remotely located terminals.
Such information processing and communication systems are
believed to be essential for the future growth of computer use
in business, in industry, in government and in scientific
laboratories as well as stimulating applications which would
be otherwise undone.”

Nov-20-03 CSE 542: Operating Systems 5

Contributions

• Segmented memory
– The Multics memory architecture divides memory into segments. Each

segment has addresses from 0 to 256K words (1 MB). The file system
is integrated with the memory access system so that programs access
files by making memory references.

• Virtual memory
– Multics uses paged memory in the manner pioneered by the Atlas

system. Addresses generated by the CPU are translated by hardware
from a virtual address to a real address. A hierarchical three-level
scheme, using main storage, paging device, and disk, provides
transparent access to the virtual memory.

• High-level language implementation
– Multics was written in the PL/I language, which was, in 1965, a new

proposal by IBM. Only a small part of the operating system was
implemented in assembly language. Writing an OS in a high-level
language was a radical idea at the time.

Nov-20-03 CSE 542: Operating Systems 6

Contributions (cont)

• Shared memory multiprocessor
– The Multics hardware architecture supports multiple CPUs sharing the

same physical memory. All processors are equivalent.

• Multi-language support
– In addition to PL/I, Multics supports BCPL, BASIC, APL, FORTRAN,

LISP, C, COBOL, ALGOL 68 and Pascal. Routines in these
languages can call each other.

• Relational database
– Multics provided the first commercial relational database product, the

Multics Relational Data Store (MRDS), in 1978.

• Security
– Multics was designed to be secure from the beginning. In the 1980s,

the system was awarded the B2 security rating by the US government
NCSC, the first (and for years only) system to get a B2 rating.

Nov-20-03 CSE 542: Operating Systems 7

Contributions (cont.)

• On-line reconfiguration
– As part of the computer utility orientation, Multics was designed to be

able to run 7 days a week, 24 hours a day. CPUs, memory, I/O
controllers, and disk drives can be added to and removed from the
system configuration while the system is running.

• Software Engineering
– The development team spent a lot of effort finding ways to build the

system in a disciplined way. The Multics System Programmer's
Manual (MSPM) was written before implementation started: it was
3000 or so pages and filled about 4 feet of shelf space in looseleaf
binders. (Clingen and Corbató mention that we couldn't have built the
system without the invention of the photocopier.) High level language,
design and code review, structured programming, modularization and
layering were all employed extensively to manage the complexity of
the system, which was one of the largest software development efforts
of its day.

Nov-20-03 CSE 542: Operating Systems 8

Legacy - Positive and negative

• UNIX:
– Ken Thompson and Dennis Ritchie, the inventors of UNIX, worked on

Multics until Bell Labs dropped out of the Multics development effort in
1969. The UNIX system's name is a pun on Multics attributed to Brian
Kernighan. Some ideas in Multics were developed further in UNIX.

• GCOS 6
– Honeywell's GCOS 6 operating system for the Level 6 minicomputers

was strongly influenced by Multics.

• Primos
– Prime's Primos operating system shows a strong Multics influence. Bill

Poduska worked on Multics at MIT before founding Prime, and several
other senior Multicians worked at Prime. Poduska referred to Primos
as "Multics in a shoebox."

Nov-20-03 CSE 542: Operating Systems 9

Legacy
• VOS

– Stratus's VOS operating system shows a strong Multics influence. Bob
Freiburghouse, former Multics languages manager, was one of the
founders of Stratus; many Multicians are still Stratus employees.

• Apollo Domain
– Bill Poduska went on from Prime to help found Apollo, and Domain

was known as "Multics in a Matchbox." Apollo's OS shows strong
Multics influence. For instance, the basic access to stuff on disk is via
a single-level store directly based on Multics. Supposedly some of the
motivation for the object-store style of file system came from Multics
too. (Info from Frederick Roeber) [Jerry Saltzer adds:] In addition, it
uses a shared memory model, despite being distributed across a
network

• NTT DIPS
– NTT undertook a massive effort to clone Multics, which led to their

DIPS (Denden Information Processing System) series of mainframes.
DIPS machines are still in widespread use in Japan today by NTT, but
everyone agrees that they are going away. I believe that Intermetrics
developed the DIPS PL/I compiler for NTT.

Nov-20-03 CSE 542: Operating Systems 10

Legacy

• Amber

• IBM System 360

• Tenex, TOPS 20, GCOS etc etc

• Most of the the project members were influential in
shaping the computer industry and they took Multics
ideas with them

• Monolithic vs microkernel debate

Nov-20-03 CSE 542: Operating Systems 11

Mach
• Microkernel

• Courtesy: Jonathan 'Wolf' Rentzsch

Nov-20-03 CSE 542: Operating Systems 12

Mach abstractions

• Microkernel only provide code mechanisms. Policies
implemented in OS servers (BSD, and others)

• Tasks
– Resource ownership

• Threads
– Scheduling and preemption

• Virtual Memory (Memory Objects)
• Memory protection and management•

• Task-to-Task Communication (Ports)
– Controlled interaction

Nov-20-03 CSE 542: Operating Systems 13

Exokernel

• If you use the right library (basically customize the
OS for each application) then you can get good
performance

• What about:
– Version control (which library should I use?)

– General purpose usage setup: do they benefit?

– Effort duplication among applications?

• What is the right approach for next generation OS?

