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Outline

• Chapter 17: Distributed Coordination

• Time, clocks and the ordering of events in a
Distributed System - Leslie Lamport
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Problem – happens before relationship

• The notion of time or “happens before” relationship
is fundamental in computer systems

E.g. open(), read(), write(), close(). We want open() to
happen before the read() and close() to happen after
read() and write().

e.g. Airlines reservation: Reservation is granted if it is
made before flight is full.
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Happens before in distributed systems

• Distributed systems are a bunch of systems that
communicate with each other. These messages take
a finite time to propagate. The time taken varies
between different machines. Messages can also
arrive out of order among machines.

• When two systems issue the open() and read(), it is
sometimes impossible to tell which happened before
the other (depending on the message delays)

• It is hard to maintain physical time across machines

• Hence, it is important to understand time and
ordering of events within distributed systems.
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Partial ordering

• Assume that the system is made of a number of
processes. Each process consists of a sequence of
events.

• “happens before” relationship:
– If a and b are events in the same process, a comes before

b, then a happens before b.

– If a is the sending a message and b is the receipt of it,
then a happens before b.

– If a happens before b and b happens before c, then a
happens before c

• If a does not happen before b and b does not
happen before a, a and b are concurrent
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Partial Ordering

• p3 and q3 are concurrent.
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Logical clocks

• Clock is just a way of assigning a number to an
event, number is thought of the time at which the
event occurred.

• Clock C for each process P is a function that assigns
a number Ci<a> to any event a.

• Clock condition:
– For any event a, b: if a happens before b, then C(a)<C(b)

• Happens before condition holds if:
– a and b are events in process P, and a comes before b,

then C(a) < C(b)

– a is the sending of a message and b is the receipt then
C(a)<C(b)
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Implementable clock condition

1. Each process P, increments C between any two
successive events

2. If event a is the sending of a message m by
process Pi, then the message m contains a
timestamp Tm=Ci(a). Upon receiving a message m,
process Pj sets Cj greater than or equal to its
present value and greater than Tm.
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Total ordering of events

• We can use a system of clocks satisfying the clock
condition to place a total ordering on the set of all
system events. We order events by the times at
which they occur. To break ties, we use any arbitrary
total ordering of the processes
– If a is an event in Pi and b is an event in Pj, then a⇒b iff

• Ci(a) < Cj(b) or

• Ci(a) = Ci(b) and Pi < Pj

• Total ordering depends on the clocks (C). Partial
ordering is absolute
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Application

• Algorithm for granting a resource which satisfies:
1. A process which has been granted the resource must

release it before it can be granted to another process

2. Different requests for the resource must be granted in
the order in which they are made

3. If event process which is granted the resource eventually
releases it, then every request is eventually granted

Central server based approaches that use the time
received to grant resources does not work if two
request take different times to reach the service



Nov-11-03 CSE 542: Operating Systems 10

Physical clocks

• To synchronize clocks:
– Sender sends message with time stamp

– Receiver receives responses. The difference in expected
and unexpected delay is the clock drift.

• They derive a bound on time taken to synchronize
clocks.
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Event ordering

• Happened-before relation (denoted by →).
– If A and B are events in the same process, and A was

executed before B, then A → B.

– If A is the event of sending a message by one process and
B is the event of receiving that message by another
process, then A → B.

– If A → B and B → C then A → C.
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Event ordering

• q1 happened before p4

• q0 and p3 are concurrent
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Implementing happens before

• Associate a timestamp with each system event.  Require that
for every pair of events A and B, if A → B, then the
timestamp of A is less than the timestamp of B.

• Within each process Pi a logical clock, LCi is associated.
The logical clock can be implemented as a simple counter
that is incremented between any two successive events
executed within a process.

• A process advances its logical clock when it receives a
message whose timestamp is greater than the current value
of its logical clock.

• If the timestamps of two events A and B are the same, then
the events are concurrent.  We may use the process identity
numbers to break ties and to create a total ordering.
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Distributed Mutual Exclusion (DME)

• Assumptions
– The system consists of  n processes; each process Pi

resides at a different processor.

– Each process has a critical section that requires mutual
exclusion.

• Requirement
– If Pi is executing in its critical section, then no other

process Pj is executing in its critical section.

• We present two algorithms to ensure the mutual
exclusion execution of processes in their critical
sections.
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DME:  Centralized Approach
• One of the processes in the system is chosen to coordinate

the entry to the critical section.
• A process that wants to enter its critical section sends a

request message to the coordinator.
• The coordinator decides which process can enter the critical

section next, and its sends that process a reply message.
• When the process receives a reply message from the

coordinator, it enters its critical section.
• After exiting its critical section, the process sends a release

message to the coordinator and proceeds with its execution.
• This scheme requires three messages per critical-section

entry:
– request
– reply
– release
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DME:  Fully Distributed Approach

• When process Pi wants to enter its critical section, it
generates a new timestamp, TS, and sends the
message request (Pi, TS) to all other processes in
the system.

• When process Pj receives a request message, it
may reply immediately or it may defer sending a
reply back.

• When process Pi receives a reply message from all
other processes in the system, it can enter its critical
section.

• After exiting its critical section, the process sends
reply messages to all its deferred requests.
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DME:  Fully Distributed Approach (Cont.)

• The decision whether process Pj replies immediately
to a request(Pi, TS) message or defers its reply is
based on three factors:
– If Pj is in its critical section, then it defers its reply to Pi.

– If Pj does not want to enter its critical section, then it sends
a reply immediately to Pi.

– If Pj wants to enter its critical section but has not yet
entered it, then it compares its own request timestamp
with the timestamp TS.

• If its own request timestamp is greater than TS, then it
sends a reply immediately to Pi (Pi asked first).

• Otherwise, the reply is deferred.
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Desirable Behavior of Fully Distributed Approach

• Freedom from Deadlock is ensured.
• Freedom from starvation is ensured, since entry to

the critical section is scheduled according to the
timestamp ordering.  The timestamp ordering
ensures that processes are served in a first-come,
first served order.

• The number of messages per critical-section entry is

2 x (n  – 1).

This is the minimum number of required messages
per critical-section entry when processes act
independently and concurrently.
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Three Undesirable Consequences

• The processes need to know the identity of all other
processes in the system, which makes the dynamic addition
and removal of processes more complex.

• If one of the processes fails, then the entire scheme
collapses.  This can be dealt with by continuously monitoring
the state of all the processes in the system.

• Processes that have not entered their critical section must
pause frequently to assure other processes that they intend
to enter the critical section.  This protocol is therefore suited
for small, stable sets of cooperating processes.
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Atomicity

• Either all the operations associated with a program
unit are executed to completion, or none are
performed.

• Ensuring atomicity in a distributed system requires a
transaction coordinator, which is responsible for the
following:
– Starting the execution of the transaction.
– Breaking the transaction into a number of subtransactions,

and distribution these subtransactions to the appropriate
sites for execution.

– Coordinating the termination of the transaction, which may
result in the transaction being committed at all sites or
aborted at all sites.
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Two-Phase Commit Protocol (2PC)

• Assumes fail-stop model.

• Execution of the protocol is initiated by the coordinator after
the last step of the transaction has been reached.

• When the protocol is initiated, the transaction may still be
executing at some of the local sites.

• The protocol involves all the local sites at which the
transaction executed.

• Example:  Let T be a transaction initiated at site Si and let the
transaction coordinator at Si be Ci.
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Phase 1:  Obtaining a Decision

• Ci adds <prepare T> record to the log.

• Ci sends <prepare T> message to all sites.

• When a site receives a <prepare T> message, the
transaction manager determines if it can commit the
transaction.
– If no:  add <no T> record to the log and respond to Ci with

<abort T>.

– If yes:

• add <ready T> record to the log.

• force all log records for T onto stable storage.

• transaction manager sends <ready T> message to Ci.
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Phase 1 (Cont.)

• Coordinator collects responses
– All respond “ready”,

decision is commit.

– At least one response is “abort”,
decision is abort.

– At least one participant fails to respond within time out
period,
decision is abort.
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Phase 2:  Recording Decision in the Database

• Coordinator adds a decision record

<abort T> or <commit T>

to its log and forces record onto stable storage.

• Once that record reaches stable storage it is
irrevocable (even if failures occur).

• Coordinator sends a message to each participant
informing it of the decision (commit or abort).

• Participants take appropriate action locally.
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Failure Handling in 2PC – Site Failure

• The log contains a <commit T> record.  In this case,
the site executes redo(T).

• The log contains an <abort T> record.  In this case,
the site executes undo(T).

• The contains a <ready T> record; consult Ci.  If Ci is
down, site sends query-status T message to the
other sites.

• The log contains no control records concerning T.  In
this case, the site executes undo(T).
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Failure Handling in 2PC – Coordinator Ci Failure

• If an active site contains a <commit T> record in its log, the T
must be committed.

• If an active site contains an <abort T> record in its log, then T
must be aborted.

• If some active site does not contain the record <ready T> in
its log then the failed coordinator Ci cannot have decided to
commit T.  Rather than wait for Ci to recover, it is preferable
to abort T.

• All active sites have a <ready T> record in their logs, but no
additional control records.  In this case we must wait for the
coordinator to recover.
– Blocking problem  – T is blocked pending the recovery of site Si.
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Concurrency Control

• Modify the centralized concurrency schemes to
accommodate the distribution of transactions.

• Transaction manager coordinates execution of
transactions (or subtransactions) that access data at
local sites.

• Local transaction only executes at that site.

• Global transaction executes at several sites.
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Locking Protocols

• Can use the two-phase locking protocol in a
distributed environment by changing how the lock
manager is implemented.

• Nonreplicated scheme – each site maintains a local
lock manager which administers lock and unlock
requests for those data items that are stored in that
site.
– Simple implementation involves two message transfers for

handling lock requests, and one message transfer for
handling unlock requests.

– Deadlock handling is more complex.
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Single-Coordinator Approach

• A single lock manager resides in a single chosen site, all lock
and unlock requests are made a that site.

• Simple implementation

• Simple deadlock handling

• Possibility of bottleneck

• Vulnerable to loss of concurrency controller if single site fails

• Multiple-coordinator approach distributes lock-manager
function over several sites.
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Majority Protocol

• Avoids drawbacks of central control by dealing with
replicated data in a decentralized manner.

• More complicated to implement

• Deadlock-handling algorithms must be modified;
possible for deadlock to occur in locking only one
data item.
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Biased Protocol

• Similar to majority protocol, but requests for shared
locks prioritized over requests for exclusive locks.

• Less overhead on read operations than in majority
protocol; but has additional overhead on writes.

• Like majority protocol, deadlock handling is complex.
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Primary Copy

• One of the sites at which a replica resides is
designated as the primary site.  Request to lock a
data item is made at the primary site of that data
item.

• Concurrency control for replicated data handled in a
manner similar to that of unreplicated data.

• Simple implementation, but if primary site fails, the
data item is unavailable, even though other sites
may have a replica.
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Timestamping

• Generate unique timestamps in distributed scheme:
– Each site generates a unique local timestamp.

– The global unique timestamp is obtained by concatenation
of the unique local timestamp with the unique site identifier

– Use a logical clock defined within each site to ensure the
fair generation of timestamps.

• Timestamp-ordering scheme – combine the
centralized concurrency control timestamp scheme
with the 2PC protocol to obtain a protocol that
ensures serializability with no cascading rollbacks.
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Generation of Unique Timestamps
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Deadlock Prevention

• Resource-ordering deadlock-prevention – define a
global ordering among the system resources.
– Assign a unique number to all system resources.
– A process may request a resource with unique number i

only if it is not holding a resource with a unique number
grater than i.

– Simple to implement; requires little overhead.

• Banker’s algorithm – designate one of the processes
in the system as the process that maintains the
information necessary to carry out the Banker’s
algorithm.
– Also implemented easily, but may require too much

overhead.
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Timestamped Deadlock-Prevention Scheme

• Each process Pi is assigned a unique priority
number

• Priority numbers are used to decide whether a
process Pi should wait for a process Pj; otherwise Pi
is rolled back.

• The scheme prevents deadlocks.  For every edge Pi
→ Pj in the wait-for graph, Pi has a higher priority
than Pj.  Thus a cycle cannot exist.
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Wait-Die Scheme

• Based on a nonpreemptive technique.

• If Pi requests a resource currently held by Pj, Pi is
allowed to wait only if it has a smaller timestamp
than does Pj (Pi is older than Pj).  Otherwise, Pi is
rolled back (dies).

• Example:  Suppose that processes P1, P2, and P3

have timestamps t, 10, and 15 respectively.
– if P1 request a resource held by P2, then P1 will wait.

– If P3 requests a resource held by P2, then P3 will be
rolled back.
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Would-Wait Scheme

• Based on a preemptive technique; counterpart to the
wait-die system.

• If Pi requests a resource currently held by Pj, Pi is
allowed to wait only if it has a larger timestamp than
does Pj (Pi is younger than Pj).  Otherwise Pj is
rolled back (Pj is wounded by Pi).

• Example:  Suppose that processes P1, P2, and P3
have timestamps 5, 10, and 15 respectively.
– If P1 requests a resource held by P2, then the resource will

be preempted from P2 and P2 will be rolled back.
– If P3 requests a resource held by P2, then P3 will wait.
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Two Local Wait-For Graphs
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Global Wait-For Graph
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Deadlock Detection – Centralized Approach
• Each site keeps a local wait-for graph.  The nodes of the

graph correspond to all the processes that are currently
either holding or requesting any of the resources local to that
site.

• A global wait-for graph is maintained in a single coordination
process; this graph is the union of all local wait-for graphs.

• There are three different options (points in time) when the
wait-for graph may be constructed:
1. Whenever a new edge is inserted or removed in one of the local wait-

for graphs.
2. Periodically, when a number of changes have occurred in a wait-for

graph.
3. Whenever the coordinator needs to invoke the cycle-detection

algorithm..

• Unnecessary rollbacks may occur as a result of false cycles.
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Detection Algorithm Based on Option 3

• Append unique identifiers (timestamps) to requests
form different sites.

• When process Pi, at site A, requests a resource
from process Pj, at site B, a request message with
timestamp TS is sent.

• The edge Pi → Pj with the label TS is inserted in the
local wait-for of A. The edge is inserted in the local
wait-for graph of B only if B has received the request
message and cannot immediately grant the
requested resource.
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The Algorithm

1.The controller sends an initiating message to each
site in the system.

2.On receiving this message, a site sends its local
wait-for graph to the coordinator.

3.When the controller has received a reply from each
site, it constructs a graph as follows:
(a) The constructed graph contains a vertex for every

process in the system.
(b) The graph has an edge Pi → Pj if and only if (1) there is

an edge Pi → Pj in one of the wait-for graphs, or (2) an
edge Pi → Pj with some label TS appears in more than
one wait-for graph.

If the constructed graph contains a cycle ⇒ deadlock.
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Local and Global Wait-For Graphs
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Fully Distributed Approach

• All controllers share equally the responsibility for
detecting deadlock.

• Every site constructs a wait-for graph that
represents a part of the total graph.

• We add one additional node Pex to each local wait-
for graph.

• If a local wait-for graph contains a cycle that does
not involve node Pex, then the system is in a
deadlock state.

• A cycle involving Pex implies the possibility of a
deadlock.  To ascertain whether a deadlock does
exist, a distributed deadlock-detection algorithm
must be invoked.
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Augmented Local Wait-For Graphs
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Augmented Local Wait-For Graph in Site S2
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Election Algorithms

• Determine where a new copy of the coordinator should be
restarted.

• Assume that a unique priority number is associated with each
active process in the system, and assume that the priority
number of process Pi  is i.

• Assume a one-to-one correspondence between processes
and sites.

• The coordinator is always the process with the largest priority
number.  When a coordinator fails, the algorithm must elect
that active process with the largest priority number.

• Two algorithms, the bully algorithm and a ring algorithm, can
be used to elect a new coordinator in case of failures.
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Bully Algorithm

• Applicable to systems where every process can
send a message to every other process in the
system.

• If process Pi sends a request that is not answered
by the coordinator within a time interval T, assume
that the coordinator has failed; Pi tries to elect itself
as the new coordinator.

• Pi sends an election message to every process with
a higher priority number, Pi then waits for any of
these processes to answer within T.
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Bully Algorithm (Cont.)

• If no response within T, assume that all processes
with numbers greater than i have failed; Pi elects
itself the new coordinator.

• If answer is received, Pi begins time interval T´,
waiting to receive a message that a process with a
higher priority number has been elected.

• If no message is sent within T´, assume the process
with a higher number has failed; Pi should restart the
algorithm
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Bully Algorithm (Cont.)
• If Pi is not the coordinator, then, at any time during execution,

Pi may receive one of the following two messages from
process Pj.
– Pj is the new coordinator (j > i).  Pi, in turn, records this information.
– Pj started an election (j > i).  Pi, sends a response to Pj and begins its

own election algorithm, provided that Pi has not already initiated such
an election.

• After a failed process recovers, it immediately begins
execution of the same algorithm.

• If there are no active processes with higher numbers, the
recovered process forces all processes with lower number to
let it become the coordinator process, even if there is a
currently active coordinator with a lower number.



Nov-11-03 CSE 542: Operating Systems 52

Ring Algorithm

• Applicable to systems organized as a ring (logically or
physically).

• Assumes that the links are unidirectional, and that processes
send their messages to their right neighbors.

• Each process maintains an active list, consisting of all the
priority numbers of all active processes in the system when
the algorithm ends.

• If process Pi detects a coordinator failure, I creates a new
active list that is initially empty.  It then sends a message
elect(i) to its right neighbor, and adds the number i to its
active list.
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Ring Algorithm (Cont.)

• If Pi receives a message elect(j) from the process on
the left, it must respond in one of three ways:

1. If this is the first elect message it has seen or sent, Pi
creates a new active list with the numbers i and j.  It then
sends the message elect(i), followed by the message
elect(j).

2. If i ≠ j, then the active list for Pi now contains the numbers
of all the active processes in the system.  Pi can now
determine the largest number in the active list to identify
the new coordinator process.

3. If i = j, then Pi receives the message elect(i). The active
list for Pi contains all the active processes in the system.
Pi can now determine the new coordinator process.
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Reaching Agreement

• There are applications where a set of processes
wish to agree on a common “value”.

• Such agreement may not take place due to:
– Faulty communication medium

– Faulty processes

• Processes may send garbled or incorrect messages to
other processes.

• A subset of the processes may collaborate with each
other in an attempt to defeat the scheme.
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Faulty Communications

• Process Pi at site A, has sent a message to process Pj at site
B; to proceed, Pi needs to know if Pj has received the
message.

• Detect failures using a time-out scheme.
– When Pi sends out a message, it also specifies a time interval during

which it is willing to wait for an acknowledgment message form Pj.

– When Pj receives the message, it immediately sends an
acknowledgment to Pi.

– If Pi receives the acknowledgment message within the specified time
interval, it concludes that Pj has received its message.  If a time-out
occurs, Pj needs to retransmit its message and wait for an
acknowledgment.

– Continue until Pi either receives an acknowledgment, or is notified by
the system that B is down.
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Faulty Communications (Cont.)

• Suppose that Pj also needs to know that Pi has
received its acknowledgment message, in order to
decide on how to proceed.

– In the presence of failure, it is not possible to accomplish
this task.

– It is not possible in a distributed environment for
processes Pi and Pj to agree completely on their
respective states.
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Faulty Processes (Byzantine Generals Problem)

• Communication medium is reliable, but processes can fail in
unpredictable ways.

• Consider a system of n processes, of which no more than m
are faulty.  Suppose that each process Pi has some private
value of Vi.

• Devise an algorithm that allows each nonfaulty Pi to construct
a vector Xi = (Ai,1, Ai,2, …, Ai,n) such that::
– If Pj is a nonfaulty process, then Aij = Vj.

– If Pi and Pj are both nonfaulty processes, then Xi = Xj.

• Solutions share the following properties.
– A correct algorithm can be devised only if n ≥ 3 x m + 1.

– The worst-case delay for reaching agreement is proportionate to m +
1 message-passing delays.



Nov-11-03 CSE 542: Operating Systems 58

Faulty Processes (Cont.)

• An algorithm for the case where m = 1 and n = 4 requires two
rounds of information exchange:
– Each process sends its private value to the other 3 processes.

– Each process sends the information it has obtained in the first round
to all other processes.

• If a faulty process refuses to send messages, a nonfaulty
process can choose an arbitrary value and pretend that that
value was sent by that process.

• After the two rounds are completed, a nonfaulty process Pi
can construct its vector Xi = (Ai,1, Ai,2, Ai,3, Ai,4) as follows:
– Ai,j = Vi.
– For j ≠ i, if at least two of the three values reported for process Pj

agree, then the majority value is used to set the value of Aij.
Otherwise, a default value (nil) is used.


