
Oct-14-03 CSE 542: Operating Systems 1

Outline

• Chapter 15: Distributed System Structures

• Chapter 16: Distributed File Systems

• AFS paper
– Should be familiar to you - ND uses AFS for most of its file

storage

Oct-14-03 CSE 542: Operating Systems 2

Advantages of Distributed Systems

• Resource sharing
• Computation speedup

– Load sharing

• Reliability
– Replicated services - e.g. web services (yahoo.com)

• Network Operating Systems
– Explicit network service access

• Distributed Systems - transparent
– Data migration
– Computation migration
– Process migration

Oct-14-03 CSE 542: Operating Systems 3

Network constraints

• Specific system design depends on the network
constraints
– LAN vs WAN (latency, reliability, available bandwidth, etc.)

– Naming and Name resolution (Internet address)

– Routing, data transmission, connection and other
networking strategies

• Distributed File System as a Distributed “Operating”
system service

Oct-14-03 CSE 542: Operating Systems 4

Distributed File System

• Naming and transparency:
– Location transparency: Name does not hint on the file’s

physical storage location

• (/net/wizard/tmp is not location transparent)

– Location independence: Name does not have to be
changed when the physical storage location changes

• AFS provides location independence

• (/afs/nd.edu/user37/surendar)

Oct-14-03 CSE 542: Operating Systems 5

Remote file access

• Caching scheme
– Cache consistency problem

• Blocks (NFS) to files (AFS)

– Cache location

• Main memory vs disk vs remote memory

– Cache update policy

• Write-through policy, delayed-write policy (consistency
vs performance)

– Consistency (client initiated or server initiated)

• Depends on who maintains state

Oct-14-03 CSE 542: Operating Systems 6

Stateful vs stateless service

• Either server tracks each file access or it provides
block service (stateless)
– AFS vs NFS

– Server crash looks like a slow server to stateless client.

– Server crash means that state has to be rebuilt in stateful
server

– Server needs to perform orphan detection and elimination
to detech “dead” clients in stateful service

– Stateless servers: larger requests packets, as each
request carrys the complete state

– Replication - to improve availability

Oct-14-03 CSE 542: Operating Systems 7

AFS

• Developed in mid 80’s at CMU to support about
5000 workstations on campus

• Stateful server with call backs for invalidation

• Shared global name space

• Clusters of servers implement this name space at
the granularity of volumes

• All client requests are encrypted

• AFS uses ACLs for directories and UNIX protection
for files

Oct-14-03 CSE 542: Operating Systems 8

File operations and consistency semantics

• Each client provides a local disk cache
• Clients cache entire files (for the most part - AFS3

allows blocks)
– Large files pose problems with local cache and initial

latency

• Clients register call back with server & Server
notifies clients on a conflict read-write conflict to
invalidate cache

• On close, data is written back to the server
• Directory and symbolic links are also cached in later

versions
• AFS coexists with UNIX file systems and uses UNIX

calls for cached copies

Oct-14-03 CSE 542: Operating Systems 9

Design principles for AFS and Coda

• Workstations have cycles to burn - use them

• Cache whenever possible

• Exploit file usage properties
– Temporary files are not stored in AFS

– Systems files use read-only replication

– Minimize system wide knowledge and change

– Trust the fewest possible entities

– Batch if possible

Oct-14-03 CSE 542: Operating Systems 10

Extra material

• Oceanstore: An architecture for Global-Scale
Persistent Storage – University of California,
Berkeley. ASPLOS 2000

• Chord

• Content Distribution Network

Oct-14-03 CSE 542: Operating Systems 11

Content Distribution Networks (slides courtesy Girish
Borkar: Udel)

congested

Not congested

original content

Replica

Replica

Client

Oct-14-03 CSE 542: Operating Systems 12

Persistent store

E.g. files (traditional operating systems), persistent
objects (in a object based system)

• Applications operate on objects in persistent store
– Powerpoint operates on a persistent .ppt file, mutating its

contents

– Palm calendar operates on my calendar which is
replicated in myYahoo, Palm Desktop and the Pilot itself

• Storage is cheap but maintenance is not
~ 4 $/GB

Oct-14-03 CSE 542: Operating Systems 13

Global Persistent Store

• Persistent store is fundamental for future ubiquitous
computing because it allows "devices" to operate
transparently, consistently and reliably on data.

• Transparent: Permits behavior to be independent of
the device themselves

• Consistently: Allows users to safely access the
same information from many different devices
simultaneously.

• Reliably: Devices can be rebooted or replaced
without losing vital configuration information

Oct-14-03 CSE 542: Operating Systems 14

Persistent store on a wide-scale

• 10 billion users, 10,000 files per user = 100 trillion
files!!

• Information:
– should be separated from location. To achieve uniform

and highly-available access to information, servers must
be geographically distributed, but exploit caching close to
clients for performance

– must be secure

– must be durable

– must be consistent

Oct-14-03 CSE 542: Operating Systems 15

Oceanstore system model: Data Utility

IndianaStore

USAStore

Ameritech

CaliforniaStore

SanJoseStore

End User with roaming access

Oct-14-03 CSE 542: Operating Systems 16

Oceanstore system model: Data Utility

IndianaStore

USAStore

Ameritech

CaliforniaStore

SanJoseStore

End User with roaming access

Oct-14-03 CSE 542: Operating Systems 17

Oceanstore Goals

• Untrusted infrastructure (utility model – telephone)
– Only clients can be trusted

– Servers can crash, or leak information to third parties

– Most of the servers are working correctly most of the time

– Class of trusted servers that can carry out protocols on the
clients behalf (financially liable for integrity of data)

• Nomadic Data Access
– Data can be cached anywhere, anytime (promiscuous

caching)

– Continuous introspective monitoring to locate data close to
the user

Oct-14-03 CSE 542: Operating Systems 18

Oceanstore Persistent Object

• Named by a globally unique id (GUID)

• Such GUIDs are hard to use. If you are expecting
10 trillion files, your GUID will have to be a long
(say 128 bit) ID rather than a simple name
– passwd vs 12agfs237dfdfhj459uxzozfk459ldfnhgga

• self-certifying names
1. secureHash(/id=surendar,ou=uga,key=<SecureKey>/etc/passwd)

-> uniqueId

2. Map uniqueId->GUID

– Users would use symbolic links for easy usage

• /etc/passwd -> uniqueId

Oct-14-03 CSE 542: Operating Systems 19

SecureHash

• Pros:
– The self-certifying name specifies my access rights

• Cons:
– If I lose the key, the data is lost

• Key management issues
– Keys can be upgraded

– Keys can be revoked

– How do we share data?

Oct-14-03 CSE 542: Operating Systems 20

Access Control

• All read-shared-users share an encryption key
– Revocation:

• Data should be deleted from all replicas

• Data should be re-encrypted

• New keys should be distributed

• Clients can still access old data till it is deleted in all
replicas

• All writes are signed
– Validity checked by Access Control Lists (ACLs)

– If A says trust B, B says trust C, C says trust D,

 what can you infer about A ? D

Oct-14-03 CSE 542: Operating Systems 21

Oceanstore Persistent Object

• Objects are replicated on multiple servers.
Replicated objects are not tied to particular servers
i.e. floating replicas

• Replicas located by a probabilistic algorithm first
before using a deterministic algorithm

• Data can be active or archival.
– Archival data is read-only and spread over multiple

servers – deep archival storage

Oct-14-03 CSE 542: Operating Systems 22

Updates

• Objects are modified through updates (data is
never overwritten) i.e. versioning system

• Application level conflict resolution

• Updates consist of a predicate and value pair. If a
predicate evaluates to true, the corresponding
value is applied.
1. <room 453 free?>, <reserve room>

2. <room 527 free?>, <reserve room>

3. <else> <go to Jittery Joes>

• This is similar to Bayou

Oct-14-03 CSE 542: Operating Systems 23

Introspection

• Oceanstore uses introspection to monitor system
behavior

• Use this information for cluster recognition

• Use this information for replica management

Oct-14-03 CSE 542: Operating Systems 24

MSR Serverless Distributed File System

• They’ve actually implemented this system within
Microsoft and hence have real results

• Assumption 1: not-fully-trusted environment

• Assumption 2: Disk space is not that free

• Each disk is partitioned into three areas:
– Scratch area – for local computations

– Global storage area

– Local cache for global storage

Oct-14-03 CSE 542: Operating Systems 25

Efficiency consideration

• Compress data in storage

• Coalesce distinct files that have identical contents
– Probably an artifact of Windows environment that stores

files in specific locations e.g. c:\windows\system\

• File are replicated
– Machines that are topologically close

– Machines that are lightly loaded

– Non-cache reads and writes to prevent buffer cache
pollution

Oct-14-03 CSE 542: Operating Systems 26

Replica management

• Files in a directory are replicated together

• When new machines join, its data is replicated to
other machines

• Replicas of other files are moved into the new
machine

• When machine leaves, the data in that machine is
replicated in other machines from other replicas

Oct-14-03 CSE 542: Operating Systems 27

Security

• File updates are digitally signed

• File contents are encrypted before replication

• Convergent encryption to coalesce encrypted file
• Encryption:

1. Hash(file contents) -> uniqueHash
1. Encrypt(unencrypterfile, uniqueHash)->encryptedfile

1. User1: encrypt(UserKey1, uniqueHash) -> Key1

2. User2: encrypt(UserKey2, uniqueHash) -> Key2

• Decryption

• User1: decrypt(UserKey1, Key1) -> uniqueHash

• Decrypt(encryptedfile, uniqueHash) -> unencryptedfile

Oct-14-03 CSE 542: Operating Systems 28

Application API

• Related read, write operations to objects form a
session (defined by the application developer)

• Users specify the session guarantees required for
each session

• Applications can register call back functions for
exceptions

Oct-14-03 CSE 542: Operating Systems 29

Transactions (Database technology)

• A transaction is a program unit that must be
executed atomically; either the entire unit is
executed or none at all. The transaction either
completes in its entirety, or it does not (or at least,
nothing appears to have happened).

• A transaction can generally be thought of as a
sequence of reads and writes, which is either
committed or aborted. A committed transaction is
one that has been completed entirely and
successfully, whereas an aborted transaction is one
that has not. If a transaction is aborted, then the
state of the system must be rolled-back to the state
it had before the aborted transaction began.

Oct-14-03 CSE 542: Operating Systems 30

ACID semantics

• Atomicity – each transaction is atomic, every
operation succeeds or none at all

• Consistency – maintaining correct invariants across
the data before and after the transaction

• Isolation - either has the value before the atomic
action or after it, but never intermediate

• Durability – persistent on stable storage (backups,
transaction logging, checkpoints)

Oct-14-03 CSE 542: Operating Systems 31

Relaxed semantics

• Relax the ACID constraints

• We could relax consistency for better performance
(ala Bayou) where you are willing to tolerate
inconsistent data for better performance. For
example, you are willing to work with partial calendar
update and are willing to work with partial
information rather than wait for confirmed data. More
on this later on in the course.

