Improving performance

- Reduce number of context switches
- Reduce data copying
- Reduce interrupts by using large transfers, smart controllers, polling
- Use DMA
- Balance CPU, memory, bus, and I/O performance for highest throughput

Disk scheduling

- Schedule disk accesses to gain performance
 - FCFS first come first service
 - SSTF shorted seek time first
 - starvation
 - SCAN
 - Elevator algorithm
 - CSCAN
 - Restarts from the beginning after each cycle
 - LOOK
 - Look till end of direction
 - CLOOK
- Disk scheduling harder with smart disks that can rearrange bad sectors

Disk attachment

Host-attached storage
 SCSI, Fibre-Channel

- Network attached storage (NAS)
 - Device implements a complete file system
- Storage-Area Networks
 - High speed interconnect
 - Can dynamically reassign disks to other servers
- iSCSI
 - SCSI using IP protocols
 - Security, congestion etc. are issues
- Direct Access File System (DAFS)
 - Emerging standard leveraging Remote Direct Memory Access infrastructure
 - http://www.dafscollaborative.org/

RAID

- Reliability vs redundancy
- Performance via parallelism
- Raid 0: striping w/o redundancy
 - No redundancy
 - Good I/O performance
- Raid 1: Mirrored disks
 - Highly redundant
 - Twice read rate, same write performance
- Raid 2: Hamming code ECC
 - Separate disks for data and error correction code
 - Commercially not viable

Raid levels

- Raid 3: bit-interleaved parity organization
 Data with separate parity disks
- Raid 4: block-interleaved parity
 - Separate parity disk
- Raid 5: Block-interleaved distributed parity
 - Parity data is distributed across all disks
 - Complex implementation on the controller
- Raid 6: Independent Data disks with two independent distributed parity schemes
- Raid 10 (striped array whose segments are RAID 1 arrays), 50, 0+1, 53, ...

RAID animations

• http://www.acnc.com/04 01 00 flash.html

Snapmirror

- SnapMirror: File System based asynchronous Mirroring for disaster recovery
- Trends:
 - Persistent and reliable data is crucial for businesses
 - Disks are getting cheaper and bigger, backup technologies are not keeping up
 - RAID to guard against disk failures
 - Hybrid levels (level 50) can provide redundancy and performance
 - Disaster recovery
 - Create off-site online backups to guard against disasters

Challenges

- Backup restore from tapes are cheap but slow
 - Tapes can achieve around 60 GB/hour for restore
 - Terabyte data stores can take a long time to restore
- Online remote backup
 - Expensive (network bandwidth requirements)
 - Performance slow because transaction cannot complete till WAN update finishes
- Asynchronous backups
 - Backup at regular intervals
 - If backup goes to multiple devices, then the event ordering can create inconsistent backups
- We want cheaper, faster restore capable mechanism

Remote mirrors for disaster recovery

Courtesy: NetApp

Snapshot Internals (1)

Snapshot Internals (2)

Snapshot Internals (3)

Snapshot Internals (4)

- Active file system version of NETAPP.DAT is now composed of disk blocks A, B & C'.
 - Snapshot.0 file system version of NETAPP.DAT is still composed of blocks A, B & C

Snapshot Internals (5)

 Snapshot.1 file system version of NETAPP.DAT is composed of blocks A, B & C'

Oct-9-03

CSE 542: Operating Systems

SnapMirror

- Can use this mechanism to mirror data across WAN
- Can reduce data storage requirements by not backing up deleted/updated data
- Identifying dirty blocks are easier than logical, file system aware mechanisms

