
Oct-2-03 CSE 542: Operating Systems 1

File system implementation

• Virtual File Systems - easily change underlying
storage mechanisms to local or remote

• Directory Implementation: Linear list, Hash table

• Allocation: Contiguous (fragmentation), linked
allocation (FAT), Indexed Allocation (single level,
multilevel)

• Free space management: Bit vector, Linked list,
Grouping, Counting

• Recovery and consistency checking

Oct-2-03 CSE 542: Operating Systems 2

Contiguous allocation

Oct-2-03 CSE 542: Operating Systems 3

File allocation table (FAT)

Oct-2-03 CSE 542: Operating Systems 4

Unix - Indexed allocation

Oct-2-03 CSE 542: Operating Systems 5

Backups

• Backup and restore: Towers of Hanoi style levels
– Full+Incremental backups
– Level 0 - full
– level n takes all changes since last, lower numbered level
– E.g. 0, 5, 6, 3, 5, 6
– Full, 5-0, 6-5, 3-0, 5-3, 6-5

• Log structured file system
– Provide transactional guarantees for critical meta-data

• Pathname translation:
– Multilevel directories in order from the root
– Caching to improve performance
– /usr/local/bin/ls would be /, /usr, /usr/local, /usr/local/bin ..

Oct-2-03 CSE 542: Operating Systems 6

LFS

• Log structured (or journaling) file systems record each
update to the file system as a transaction.

• All transactions are written to a log. A transaction is
considered committed once it is written to the log. However,
the file system may not yet be updated.

• The transactions in the log are asynchronously written to the
file system. When the file system is modified, the transaction
is removed from the log.

• If the file system crashes, all remaining transactions in the log
must still be performed.

Oct-2-03 CSE 542: Operating Systems 7

SAN vs NAS

• Storage area network (SAN)
– Provides a block storage abstraction and clients can build

file systems on top of it

– High speed fibre interconnects

– More expensive

• Network Attached storage (NAS)
– Exports a file system view (NFS, CIFS)

– Ethernet interconnect

Oct-2-03 CSE 542: Operating Systems 8

Network File System (NFS)

• Network protocol built over UDP/TCP

• NFS is a stateless protocol - server does not
maintain information about files
– Does not know clients that are accessing a file

– No implicit state

– Recovery is easy, clients reissue the commands

– Execute mostly once semantics

– No write caching on server, writes are synchronous

– Newer versions allow time stamped block caching

• TTL for client caching

Oct-2-03 CSE 542: Operating Systems 9

Andrew File System (AFS)

• Global name space

• Security through Kerberos

• Whole file caching
– Utilize client disk cache

• Call back invalidation
– On conflict, AFS server will issue a callback

– Server should remember invalidation tokens across crash

– Network partitions?

• Last writer wins semantics

Oct-2-03 CSE 542: Operating Systems 10

Trace driven analysis of the UNIX file system

• Rather old, but seminal. Influenced much of file
system design for a long time

• Studies like these are extremely important to
understand how typical users are using a file system
so that you can tune for performance

Oct-2-03 CSE 542: Operating Systems 11

• The key is to trace the “typical user population”.
– Academics do not have access to commercial work loads

– Chicken and Egg syndrome: Users perform certain tasks
because current systems perform poorly.

• E.g. users may backup their work into a separate file
every so often because of poor consistency
guarantees.

• UNIX vi editor saves files by deleting old file, creating a
new file with the same name, writing all the data and
then closing. If the system crashes after creating and
write, before close, data is left in buffers which are lost,
leading to a 0 byte file. It happened a lot and so
programs create backup files often.

Oct-2-03 CSE 542: Operating Systems 12

Important conclusions
• Most files are small; whole file transfer and open for short intervals. Most

files are short lived. Caching really works.

• UNIX used files as intermediate data transfer mechanisms:
– E.g. compiler

• Preprocessor reads .c file -> .i file

• CC1 reads .i -> .asm file and deletes .i file

• Assembler reads .asm -> .o file and deletes .asm file

• Linker reads .o -> executable and deletes .o file

• One solution: Make /tmp an in-memory file system

df /tmp

Filesystem 1k-blocks Used Available Use% Mounted on

swap 1274544 1776 1272768 1% /tmp

Oct-2-03 CSE 542: Operating Systems 13

Most files are read sequentially

• UNIX provides no support for structured files

• Applications that provide structured access (data
bases) use raw file interface and by-pass operating
systems

• Solution:
– Read-ahead to improve performance

Oct-2-03 CSE 542: Operating Systems 14

Most file accesses are to the same directory

• UNIX has a hierarchical file system structure

• Typical academic users compile, word process from
one directory and so all accesses are to a single
directory

• File systems such as Coda, AFS have notions of
volumes, cells that capture this

• Does this apply to Windows?

Oct-2-03 CSE 542: Operating Systems 15

Most files are small

• On a departmental machine with 8 MB of main
memory, what else do you expect

• Is it true now with our Netscape, xemacs, IE, Power
point etc?

• Relatively, it may still be true. On a 60 GB hard disk,
1 MB file may be “small”

Oct-2-03 CSE 542: Operating Systems 16

Berkeley FFS

• tunefs -p /
tunefs: ACLs: (-a) disabled

tunefs: MAC multilabel: (-l) disabled

tunefs: soft updates: (-n) disabled

tunefs: maximum blocks per file in a cylinder group: (-e) 2048

tunefs: average file size: (-f) 16384

tunefs: average number of files in a directory: (-s) 64

tunefs: minimum percentage of free space: (-m) 8%

tunefs: optimization preference: (-o) time

• Another seminal paper describing a file system that is heavily
optimized and used in FreeBSD, Mac OSX (default is HFS)

• Optimize page placement, and block sized to reflect newer
usage patterns

Oct-2-03 CSE 542: Operating Systems 17

LFS

• Files are only written to logs, there is no traditional
file system backing up the LFS

• Write performance is much improved, especially for
small files

