
Sep-30-03 CSE 542: Operating Systems 1

Outline

• Practical, Transparent Operating System Support for
Superpages Juan Navarro, Sitaram Iyer, Peter Druschel, and
Alan Cox , In Fifth Symposium on Operating Systems
Design and Implementation (OSDI 2002)

• Chapter 11: File System Interface

• Chapter 12: File System Implementation

• File System Trace Analysis
– This project started out as a OS course project and ended in SOSP!!

• Distributed File system trace analysis

Sep-30-03 CSE 542: Operating Systems 2

Superpages

• Increasing cost in TLB miss overhead
– growing working sets

– TLB size does not grow at same pace

• Processors now provide superpages
– one TLB entry can map a large region

• OSs have been slow to harness them
– no transparent superpage support for apps

Sep-30-03 CSE 542: Operating Systems 3

TLB coverage trend

0.001%

0.01%

0.1%

1.0%

10.0%

1985 1990 1995 2000

TLB coverage as percentage of main memory

Factor of 1000
 decrease in

15 years

TLB miss
overhead:

£5% 5-10%

≥30%

Sep-30-03 CSE 542: Operating Systems 4

68%22%31%24%mcf

29%1%28%28%galgel

55%55%0%1%FFT

All4MB512KB64KB

Why multiple superpage sizes

• Improvements with only one superpage size vs. all
sizes

Sep-30-03 CSE 542: Operating Systems 5

virtual memory

physical memory

superpage boundaries

B

B

A

A

C

C

D

D A B C D

ww How / when / what size to allocate?How / when / what size to allocate?

Issue 1: superpage allocation

Sep-30-03 CSE 542: Operating Systems 6

Create small superpage?
May waste overhead.

Wait for app to touch pages?
May lose opportunity to increase

TLB coverage.

Forcibly populate pages?
May cause internal fragmentation.

Issue 2: promotion

• Promotion: create a superpage out of a set of
smaller pages
– mark page table entry of each base page

• When to promote?

Sep-30-03 CSE 542: Operating Systems 7

Issue 3: demotion

• Demotion: convert a superpage into smaller pages

• when page attributes of base pages of a superpage
become non-uniform

• during partial pageouts

Sep-30-03 CSE 542: Operating Systems 8

Issue 4: fragmentation

• Memory becomes fragmented due to
– use of multiple page sizes

– persistence of file cache pages

– scattered wired (non-pageable) pages

• Contiguity: contended resource

• OS must
– use contiguity restoration techniques

– trade off impact of contiguity restoration against
superpage benefits

Sep-30-03 CSE 542: Operating Systems 9

File system interface

• File attributes
– Name: only information kept in human-readable form
– Type: Explicit or inferred
– Location: pointer to file location on device.
– Size: current file size
– Protection: controls who can do reading, writing, executing
– Time, date, user identification

• Operations: open, close, read, write, seek, append,
delete, rename …

• Access: sequential, random, structured (indexed)
• Directory: Single, Two-level, Tree-structure, Acyclic
• Remote file systems: NFS, AFS, …

Sep-30-03 CSE 542: Operating Systems 10

Consistency Semantics

• UFS: Writes to open file are visible immediately to
other users that have this file open at the same time

• AFS: Writes to an open file by a user are not visible
immediately to other users that have the same file
open simultaneously

• Semantics depend on the cost of providing
consistency vs scalability

Sep-30-03 CSE 542: Operating Systems 11

Protection

• Read, Write, Execute, Append, Delete, List etc using “owner,
group, other” UNIX model or Access control lists (ACL) of NT,
AFS

-rw-rw---- 1 surendar mail 7384093 Sep 12 02:15 /var/mail/surendar

ACL:

Access list for . is

Normal rights:

 system:administrators rlidwka

 system:anyuser l

 surendar rlidwka

Sep-30-03 CSE 542: Operating Systems 12

File system structure

Sep-30-03 CSE 542: Operating Systems 13

File system implementation

• Virtual File Systems - easily change underlying
storage mechanisms to local or remote

• Directory Implementation: Linear list, Hash table

• Allocation: Contiguous (fragmentation), linked
allocation (FAT), Indexed Allocation (single level,
multilevel)

• Free space management: Bit vector, Linked list,
Grouping, Counting

• Recovery and consistency checking

Sep-30-03 CSE 542: Operating Systems 14

Contiguous allocation

Sep-30-03 CSE 542: Operating Systems 15

File allocation table (FAT)

Sep-30-03 CSE 542: Operating Systems 16

Unix - Indexed allocation

Sep-30-03 CSE 542: Operating Systems 17

Backups

• Backup and restore: Towers of Hanoi style levels
– Full+Incremental backups
– Level 0 - full
– level n takes all changes since last, lower numbered level
– E.g. 0, 5, 6, 3, 5, 6
– Full, 5-0, 6-5, 3-0, 5-3, 6-5

• Log structured file system
– Provide transactional guarantees for critical meta-data

• Pathname translation:
– Multilevel directories in order from the root
– Caching to improve performance
– /usr/local/bin/ls would be /, /usr, /usr/local, /usr/local/bin ..

Sep-30-03 CSE 542: Operating Systems 18

LFS

• Log structured (or journaling) file systems record each
update to the file system as a transaction.

• All transactions are written to a log. A transaction is
considered committed once it is written to the log. However,
the file system may not yet be updated.

• The transactions in the log are asynchronously written to the
file system. When the file system is modified, the transaction
is removed from the log.

• If the file system crashes, all remaining transactions in the log
must still be performed.

Sep-30-03 CSE 542: Operating Systems 19

Trace driven analysis of the UNIX file system

• Rather old, but seminal. Influenced much of file
system design for a long time

• Studies like these are extremely important to
understand how typical users are using a file system
so that you can tune for performance

Sep-30-03 CSE 542: Operating Systems 20

• The key is to trace the “typical user population”.
– Academics do not have access to commercial work loads

– Chicken and Egg syndrome: Users perform certain tasks
because current systems perform poorly.

• E.g. users may backup their work into a separate file
every so often because of poor consistency
guarantees.

• UNIX vi editor saves files by deleting old file, creating a
new file with the same name, writing all the data and
then closing. If the system crashes after creating and
write, before close, data is left in buffers which are lost,
leading to a 0 byte file. It happened a lot and so
programs create backup files often.

Sep-30-03 CSE 542: Operating Systems 21

Important conclusions
• Most files are small; whole file transfer and open for short intervals. Most

files are short lived. Caching really works.

• UNIX used files as intermediate data transfer mechanisms:
– E.g. compiler

• Preprocessor reads .c file -> .i file

• CC1 reads .i -> .asm file and deletes .i file

• Assembler reads .asm -> .o file and deletes .asm file

• Linker reads .o -> executable and deletes .o file

• One solution: Make /tmp an in-memory file system

df /tmp

Filesystem 1k-blocks Used Available Use% Mounted on

swap 1274544 1776 1272768 1% /tmp

Sep-30-03 CSE 542: Operating Systems 22

Most files are read sequentially

• UNIX provides no support for structured files

• Applications that provide structured access (data
bases) use raw file interface and by-pass operating
systems

• Solution:
– Read-ahead to improve performance

Sep-30-03 CSE 542: Operating Systems 23

Most file accesses are to the same directory

• UNIX has a hierarchical file system structure

• Typical academic users compile, word process from
one directory and so all accesses are to a single
directory

• File systems such as Coda, AFS have notions of
volumes, cells that capture this

• Does this apply to Windows?

Sep-30-03 CSE 542: Operating Systems 24

Most files are small

• On a departmental machine with 8 MB of main
memory, what else do you expect

• Is it true now with our Netscape, xemacs, IE, Power
point etc?

• Relatively, it may still be true. On a 60 GB hard disk,
1 MB file may be “small”

