
The IBM Corporation
is pleased to Present the

Linux Scholars� Challenge
Winning Entries

 Linux Challenge - 2001
Student Winners

 April 12, 2002
Page 1 of 134

(presented in alphabetical order by country)

� Australia
Michael Berhanu -- Page 5
University: Australian National University

� Argentina
Sebastian Arena -- Page 9
University: Facultdad de Ingenieria

� Bulgaria
Veselin Kanev -- Page14
University: Varna’s Technical University

� China
Feng Gao --- Page 18
University: Nanjing University

� China
Hu Jiangtao -- Page 29
University: Fudan University

� Finland
Mika Pruikkonen --- Page 35
University: Helsinki University of Technology

� France
Tristan Leteutre -- Page 40
University: Ecole Centrale Paris

� Germany
Peter Rost --- Page 44
University: Berufsakademic Dresden

� Germany
Klaus Wehrle -- Page 48
University: University of Karlsruhe

 Linux Challenge - 2001
Student Winners

 April 2002
Page 2 of 134

! Germany
Uwe Walter --- Page 61
University: University of Karlsruhe

! India
Muthukumar Shunmugiah -- Page 66
University: P.S.G. College of Technology

! India
Shah Sachin -- Page 72
University: GLS Institute of Computer Technology

! India
Sreeram Jaswanth (Jesse) -- Page 76
University: International Institute of Information Technology

! Italy
Francesco Regazzoni --- Page 85
University: Politecnico di Milano

! Korea
Jongmin Park --- Page 88
University: University of ULSAN Korea

! New Zealand
Frank Kruchio -- Page 92
University: Victoria University of Wellington

! Portugal
Bruno Silva Kruchio --- Page 95
University: Universaidade De Aveiro

! United Kingdom
Helmut Cantzler -- Page 100
University: University of Edinburgh

 Linux Challenge - 2001
Student Winners

 April 2002
Page 3 of 134

! United Kingdom
Barnaby Gray --- Page 106
University: University of Cambridge

! United States of America (USA)
Dwight Tuinstra -- Page 109
University: Clarkson University

! United States of America
Phillip Allen -- Page 113
University: Clarkson University

! United States of America
Rimon Barr --- Page 117
University: Cornell University

! United States of America
Bryan Clark -- Page 122
University: Clarkson University

! United States of America
Mike Schellhase --- Page 127
University: Mellon University

! United States of America (USA)
Nick Pattengale -- Page 130
University: New Mexico Institute of Mining and Technology

 Linux Challenge - 2001
Student Winners

 April 2002
Page 4 of 134

Paper Submitted by:
Michael Berhanu

University:
Australian National University

Country:
Australia

 Linux Challenge - 2001
Student Winners

 April 2002
Page 5 of 134

Automated Test Tools that Execute Test Scenarios
and Collect Data Resulting from the Test Execution

Part I

Test workbenches and automated test tools are an integral part of any major closed
source software development project. This however, is not the case with most (even
large) open source projects. One of the major reasons for this is the lack of automated test
tools, which work well with the products being developed. This project aims to lay the
foundation of such a tool.

For an automated test tool to be effective in the Linux environment it must be well
integrated with other tools and techniques used by the open source, and especially Linux
community.

The objectives of this project is to build a software product, BugSeeker using existing
software written under the GNU General Public License, which has the following
characteristics:

! automatically executes test scenarios
! collects data resulting from such test executions
! be able to do this for software applications with command line interfaces
! be able to do this for software applications with graphical user interfaces
! compare the expected and output from the software program to check weither the test

has passed
! be well integrated with other open source testing software already available
! ability to generate test reports

Part II

The starting point for this project was Sommerville[1], in which automated test tools are
discussed and described. After obtaining a broad view of the required system, the
following products with similar objectives were examined:

Rational Suite TestStudio (www.rational.com/products/systest.jsp) - commercial
product known to be effective tool for testing software applications. This product was a
lot more comprehensive than this BugSeeker, but it showed a function that many test
tools have, the ability to generate test reports.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 6 of 134

Bugzilla (www.mozilla.org/projects/bugzilla/) - Bugzilla is the most widely used bug
tracking software system in the open source community. This is why it would be
important for a successful automated test tool to be able to directly communicate with
Bugzilla.

Mozilla Crash-Data News group (netscape.public.mozilla.crash-data) - Questions asked
to this news group were generally based around what features would an automated test
tool have, for it to be more effective than a scripting language or manual hand testing.
The major feature requested was that the tool should be able to test applications with
graphical user interfaces and be able to do regression testing.

Android (www.smith-house.org/open.html) - BugSeeker uses this tool to implement its
graphical users interface testing features. It calls the program, gives it input, and records
any output that is received.

Part III

BugSeeker's capabilities are slightly broader than that described in IBM's Linux Scholar
Challenge No. 17. Along with the ability to execute test scenarios and collect data from
the test execution it also has the following features:

! Graphical user interface: which can be used to test both command line driven
applications and applications with graphical user interfaces.

! Test data generator: generates various test data based on regular expressions.
! Oracle pluggin: expected results files or previous version of program (used for

regression testing).
! Test results report generation: Currently a table with columns labeled input, outpu
! and test passed (based on weither the output is the same as that described by the

Oracle pluggin).
! Integration with Bugzilla: facility to report any bugs found to a Bugzilla server upon

the request of the tester.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 7 of 134

Snapshot of BugSeeker:

Running under FVWM2. This screen is the first to load when the program starts.

[1] Sommerville, I., 2001, Software Engineering Sixth Edition, Addison-Wesley
Publishers Ltd. England

 Linux Challenge - 2001
Student Winners

 April 2002
Page 8 of 134

Paper Submitted by:
Sebastian Arena

University:
Facultdad de Ingenieria

Country:
Argentina

 Linux Challenge - 2001
Student Winners

 April 2002
Page 9 of 134

Figure out the Fastest Way to Boot
a Full Linux on a ThinkPad (Boot Speed)

Project Objectives

My objective is to determine the best configuration for Linux to run on an IBM ThinkPad
laptop. The key factors to accomplish this are mostly two:

1. Kernel and Modularity
2. Startup Programs (or Daemons)

This task implies to know what are the hardware setups for the ThinkPads, so I can find
what should be included on the kernel and what shouldn't. Then I should decide which
features will be inside the kernel code and which ones will be on separated modules. The
startup programs will be discussed later.

The requirements of the challenge say that boot speed must be improved in a Full Linux
box, I believe that a Full Linux includes all the features mentioned before : Video (X
Support), Sound (Multimedia), Internet, and Plug and Play , with these any user would
have good Linux experience.

Research

First of all I visited IBM Argentina's website to see which were the different models for
the ThinkPad. The models I found were: ThinkPad A Series, T Series, X Series, i Series
and Transnote.

After reading the hardware information carefully I started with my first objective:Kernel
and Modularity. It's known that the smaller the kernel the faster it loads and works, so,
using the information from the ThinkPad's models I started finding the common patterns
in all of them, to figure out which global things would be included on the kernel code (I
used kernel 2.4.9 source code for my research �) and which ones would be good to have
on modules. The modules are the best way to guarantee that, since laptops are known to
use PCMCIA ports, there are lots of devices that can be used, but not all at the same time,
so the modules reduce the kernel code and are loadable any time they are needed. Almost
every model uses an Intel Pentium III microprocessor (except the ThinkPad i Series that
uses Celeron), despite ThinkPads use a Mobile version of the PIII I checked out and
found that this microprocessor is supported by the kernel. Also, the models have 56K
Modems and Ethernet cards by default hardware setup, nowadays modems are surely
used however people who doesn't work in an office don't take advantage of Ethernet
cards, so I decided that Ethernet configuration would be on a separated module. I have
extracted information from, about hot-pluggable devices such as the PCMCIA ones, this

 Linux Challenge - 2001
Student Winners

 April 2002
Page 10 of 134

is a special kernel feature: it enables any device that is plugged into the system to be
recognized and ready to use, as it is important for laptops, it will be included in our
kernel code. People from helped me to find out what happened to kernel size if certain
features were removed, what I did find out is that there is no actual, precise or accurate
information on how much the kernel code is increased or reduced by putting or removing
features; It seems that when you add any new option the code adds a new structure to
support that, but on the same structure, similar features related to the first one can be
supported, so concluding, if you remove what you think is a key factor to reduce kernel
size, it may not free as much space as another one might.

To solve this problem I have been testing several kernel configurations and I have
chosen the one that suits best for our purpose (this configuration is deecribed at the end
of the essay). I decided that Parallel Port support , Plug and Play support, TCP/IP
networking (but no packet filtering), Enhanced IDE and IDE/ATAPI CDROM support
(since most of the models have CD-ROMs included), PPP protocol, DOS, VFAT,ISO
9660 and EXT2 file system support should also be directly included in the kernel code.

SCSI support wasn't needed, despite that Bluetooth and IrDA are nowadays used by
laptops, they are not supported by ThinkPads, but they could be easily compiled as
modules if devices where design for PCMCIA. Also USB is neither included by default
so it wasn't added to the kernel.

The most important things to be compiled as modules are:

1. Sound Support (in this case it would be SounblasterPro compatible (A Series) �
supported by kernel 2.4.9 -- or Crystal Semiconductor CS4624/CS4297A (T and X
Series)--not supported yet)

2. Video Cards and AGP support (in this case IBM doesn't provide information on cards
brand, except from i Series that use an ALI chip that is surely supported)

3. Ethernet cards brand aren't informed either, but as Sound and Video they can be
easily compiled as modules. Finally from I found a text about how to make the
kernel smaller and optimized that was very helpful.

My second objective was to reduce programs or daemons that are loaded on startup, such
as Web-Server, MTA (Mail Transport Agent), X, etc. Most Linux distributions install
by default Apache, sendmail, X and others, that are setup to run on startup, but most
people don't take any advantage on this. The average user, tends to use a graphical
front-end (not all users prefer this, console is fast and easy to use, but I suppose IBM
wants to have X in a Full Linux box) to manage their system, to work, to play, etc. , so X
should be included at startup (like xdm, kdm, gdm, or plain startx) although it takes
some time to load up. X implies a mouse server such as gpm and also server font. This is

 Linux Challenge - 2001
Student Winners

 April 2002
Page 11 of 134

all that should be loaded, nothing else is required except from the default kernel things
such as setserial and other configurations that must be done in order for the kernel to
work properly. Some daemons are also needed to log the system status. From I extracted
some good tips on how to remove unnecessary programs. At I found out what I could
and what couldn't remove from /etc./init.d (here is where startup programs are set). Is
good to know also that /etc./rcS** configures other features to be loaded on startup, and
are set in different runlevels.

I will now explain what were my results when I started testing some kernel
configurations and modifying /etc./init.d to improve boot speed.

Results Achieved

The first thing I did was very simple: I modify /etc./init.d to the minimal requirements as
I read on howtos downloaded from and others mentioned before. I don't actually have a
ThinkPad or any other laptop, so I tested the configuration on my actual box that is also a
PIII (450 MHz) to check if boot speed was improved. I only kept gpm (Mouse Server),
Gdm (Graphical Interface) , Log daemons and others needed by the system. I was
currently on about 40 seconds to finish booting (of course this also depends on my hard
drive and clock speed, on ThinkPads this would be much faster).

The only thing left was to make the kernel as small as possible. To do this I started from
a working kernel configuration and removing unnecessary features step by step for a
standard installation. I kept in mind what I explained before to set the kernel. My first try
made a kernel of 568 kb., it was compiled with no modules at all, everything was inside
the kernel code. This kernel did not fulfill any objective because booting speed wasn't
considerably reduced.

After several tries I realized that my idea was partly wrong, many more things could be
loaded up as modules (the loading of modules also takes time if you load everyones you
compile, but not so much time if you just use a few of them and then load them when you
need; this task can be set up so the kernel automatically does the loading), such as, a.out
programs support (that adds about 10k to the code), APM management, Parallel port,
Plug and Play, ISA PNP, Floppy disk, PPP, Mouse and Partition support such as VFAT,
DOS, ISO9660 (with Joliet), etc. By making all these as modules I could make a 400 kb.
kernel, that is consider as a small Image (because when compiling the Make command
doesn't need bzImage (Big Image), it can use zImage if kernel is less than 500 kb.). One
remarkable feature that was removed should be mentioned: PCI Name Database
administrates names for the PCI devices detected in the system, if removed devices are
only seen as numbers for the kernel, the user doen't need to know how the devices are a
called (of course they need to know in a higher level, like configuring devices, but since
laptops have install the same hardware always, these names can be factory default set). I
also removed it because it added 50 kb. in a 400 kb. kernel.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 12 of 134

My Final Conclusion is: In order to reduce boot time and increase boot speed you must:

First: Make your kernel as small as possible, so it not only loads faster but works faster
afterwards too. A Full Linux should have support for Multimedia (Sound and Video),
PNP and Internet, in order to do this many features can be loaded as modules, so the
kernel is not overloaded. Everything used once in a while (Ethernet, CD, Floppy, Printer)
must be loaded as modules so it can easily be unloaded when not used. This will reduce
boot time in 5 to 8 seconds.

Second:Remove from /etc./init.d all programs that aren't needed as essential for the Linux box to
run, such as, Web servers, Mail servers, Daemons that await external connections (telnet,
ssh). Only log daemons and graphical interface (including mouse server, font server,
etc.) should be loaded at startup for the normal user to work, play and administrate the
system correctly. This will decrease boot time in between 10 and 15 seconds.

Depending on the setup you choose booting speed can be increased in 15-20 seconds.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 13 of 134

Paper Submitted by:
Veselin Kanev

University:
Varna�s Technical University

Country:
Bulgaria

 Linux Challenge - 2001
Student Winners

 April 2002
Page 14 of 134

The TraffLog Project

Part 1. The Project

The main objective of the TraffLog project is to develop reliable and independent
software for IP accounting. That software will be able to log source and destination ip
addresses, source and destination MAC addresses, the Type of Service, source and
destination port and the time that each IP packet passed thru the server. With all that data
logged you can easily create various reports for the IP traffic. For example: you can
dump all the packets passed thru the server, with all information for each packet, you can
draw various graphics using that data, you can view the most visited web pages, so
making decision for building a peer line will be easy.

Part 2. How Did I Build It?

A. The Logging Software - "Accounting Sniffer"

There are several good IP accounting software products based on Linux firewall
capabilities. But mixing firewall rules and IP accounting rules on a single Linux server
sometimes may cause you a headache. Although you can hardly build IP accounting
software capable of logging each packet's header and generating complicated reports
using only Linux firewall. So, I decided to build an accounting software based on a
packet sniffer. I could use the PCAP library for building my "accounting sniffer", but I
decided it's better to build the software using plain Unix sockets. Not using PCAP has
one advantage - the software relies on no external libraries for collecting information, and
one disadvantage - it can only by run on a Linux server. Storing such amount of data
requires a good database system. Without reinventing the wheel and building my own I
used MySQL database system and its libmysqlclient library. This gave me a very good
opportunity - using MySQL network capabilities my small "accounting sniffer" can work
on many different routers of a Wide Area Network and log its data on a centralized
database server.

But passing the information from the accounting software to the database system means
additional network load. By using a data structure holding the information for the packets
and flushing it every N minutes to the database I minimized the network load, because of
the mysqlclient library capability to compress the data that is being send to the MySQL
server.

Additional minimization of the data amount may be accomplished by searching the data
structure for older record that is identical to the current packet (same source, destination
address and port) and adding the current packet's size to the older identical packet's size.
Using this method I can store information for two or more packets on a single member of

 Linux Challenge - 2001
Student Winners

 April 2002
Page 15 of 134

my data structure. The disadvantage is the decreasing of the timestamp accuracy with
maximum error of N minutes (the time interval between two passing the data to the
database system). Placing a centralized "accounting sniffer" on the router with
MySQL installed on it will eliminate the problems for time accuracy and network load.
The logging software will have a lighting speed internal socket communication with the
MySQL server. Building a high speed independed network connection between the
centralized gateway Linux router and the database server is also an option.

A major problem accrued with the data storage. Holding information for the all IP packets
requires a huge disk drive. And as the months pass the data amount stored in the database
will grow, making the SQL queries executed by the server slower. A good decision of the
problem is making summaries of the data for the previous months, storing them in the
same database and deleting the detailed information.Holding the detailed data for the
current and previous month and having summaries for the other months is good for a
small cable company.

For testing I ran two of my "accounting sniffers" on two Linux routers of a local cable
company and set them to log the data on a MySQL server on the same network. After a
month the database was holding 140, 072 entries. The machine with the MySQL server
was also used as a game server with Counter Strike server installed on it. When the
Counter Strike server was heavy loaded the queries to the MySQL took more than 15
seconds, witch is far away from acceptable. If I try to log the data from all the routers of
that company MySQL will ran out of steam. I went to the MySQL web site and looked
over the benchmarks. IBM's DB2 is ten times faster than MySQL and is the fastest among
Informix, SyBase and Oracle 8.0.3 on retrieving data from the database (according to the
benchmarks in the MySQL web site). The "accounting sniffer" should be developed using
some commercial DBMS. IBM's DB2 is a great idea.

B. The Front-End Interface

With the data being stored in the SQL server, building the front-end interface is easy.
The main development languages have already support for variousdatabase systems, so
the front-end interface may be build using some Windows based programming language
(Delphi, C++ for Windows), Java or PHP or/and Perl (for Web based interface). I used
PHP for building a Web based interface. The Web based interface has one great
advantage - it can be accessed thru any terminal with simple web browser. All the
calculations needed for the traffic reports are done either by the PHP module or the
MySQL server, thus the terminals are not required to be very fast computers with great
amount of memory. A simple office computer will do.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 16 of 134

Part 3. The Results:

The working "accounting sniffer" software is really small - only 23Kbytes compiled, and
it has about 450 lines of ANSI C code. Keeping the size small is essential for the stability
of the software and follows one of the great ideas of the UNIX operating systems -"build
many small and good working software tools, combine them and get a complex system
with great power and durability". And that is what I have done - my small "accounting
sniffer" collects the data, then pass it to the stable database server. The reports are made
by Apache+PHP web server and passed to the viewing software - the Web browser.

With all the IP packets information logged on a MySQL server you can create various
reports for the IP traffic. The front-end software does not limit the reports,as it is build
with an open source technology - PHP. Any third-party programmer can expand the
front-end capabilities and create very specific reports. There is another one great aspect
of this "accounting sniffer" - security. When the network's security officer has all the IP
packets information logged she/he can easily determine the source address of a DoS
attack, or the IP address of a hacker and what kind of tool she/he used to break in the
server.

The only problem that I could forsee is that MySQL DBMS will not manage with huge
data - easily created with my "accounting sniffer". MySQL is good for working
on small networks, but using this accounting software on vast networks requires a solid
DBMS like IBM's DB2.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 17 of 134

Paper Submitted by:
Feng Gao
(newmarch@263.nett)

University:
Nanjing University

Country:
China

 Linux Challenge - 2001
Student Winners

 April 2002
Page 18 of 134

Linux Device Driver

Introduction

This system is an application of Swedish Axis Company�s imbedded system developer
board. A minilinux OS called Elinux is solidified inside the Axis Developer Board. It
drives standard LCD module and displays what we want, such as roll-screen displaying,
files displaying, remote control and so on.

Keywords: Elinux drivers LCD Parallel Printer Ports Socket Programming

Part One: Introduction of Developer Environment

Developer Board ETRAX100 is developed by Axis company, and it is a highly integrated
imbedded system development toolkit. For ETRAX development Axis has developed a
prototyping board that includes the most commonly used ports on the ETRAX chip. This
ThinServer will quickly get you up to speed in development.

This is structure frame of Etrax100:

There are three COM ports£ºCOM1, COM2, Ser3 and two parallel printer ports:
par0/LPT1, par1/LPT2. The standard voltage level of par0 is 3.3v, which is compatible
with standard environmental devices. Port par0 has a buffer and a converter, but port par1
not . Port par1 can used to be connected with other parallel devices , such as LCD . The
kernel of Axis� Developer Board is a special CPU, which integrates 2M flash rom and
8M ram . The maximum entension is 4M flash rom and 8M ram. A minilinux OS called
Elinux is solidified inside the flash rom . We can practise some simple tasks , such as
telnet (at most 3 users telnet elinux at the same time) and some common commands
under linux bash: cd, ls, cat, exit and so on. In this system we use only parallel port A,
which is used to connect with LCD.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 19 of 134

par1 par0

COM1

COM2

Network
Interface

Power

RISC
CPU
Axis

Ser3

Total 26 pins, as follows:

PINS DEFINITIONS:
Header pinout I/O Header pinout I/O
1 ¨CSTROBE, PR_ACK O 2 -D0 --
3 -D1 -- 4 -D2 --
5 -D3 -- 6 -D4 --
7 -D5 -- 8 -D6 --
9 -D7 -- 10 ¨CACK, PR_REQ I
11 BUSY, RD_WR I 12 PAPER_E I
13 SELECT,-INTIO I 14 ¨CAUTO_FD O
15 ¨CFAULT,PR_ADR0 I 16 ¨CINIT,PR_INT O
17 ¨CSEL_IN O 18 GND --
19 GND -- 20 GND --
21 GND -- 22 GND --
23 GND -- 24 GND --
25 GND -- 26 OUTPUT_ENABLE O

Development Frame :

Workstation BoardWorkstationWorkstation

Hub

 Linux Challenge - 2001
Student Winners

 April 2002
Page 20 of 134

 25 23 21 19 17 15 13 11 9 7 5 3 1
 26 24 22 20 18 16 14 12 10 8 6 4 2

Above we are famaliar with our hardware developping environment.

Then we first install necessary software. We can get all information in the Axis
Developer Documentation, which include:

How to Install the Developer Board Software;
How to use mkprod;
How to use boot elinux;
Network Boot and Images;
How to Write and Build Applications for ETRAX100;
How to Write Device Drivers for ETRAX 100;
How to Add Support for Flash Devices;

According to these we build our software developing environment.

Part Two: Write a LCD HD44780 Device Driver

We use a character lcd whose control chip is HD44780 . HD44780 displays four lines
and twenty characters per line . Because the production of LCD has already realized
standardization, all LCDs with HD44780 have common pins definition and control
signals.

LCD Picture:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DISPLAY
4 X 20

LCD 16 pins definitions:
PIN FUNCTION PIN FUNCTION
1 Vss 2 Vdd
3 Vee 4 RS
5 R/W 6 E
7 DB0 8 DB1
9 DB2 10 DB3
11 DB4 12 DB5
13 DB6 14 DB7
15 NOT DEFINED 16 NOT DEFINED

 Linux Challenge - 2001
Student Winners

 April 2002
Page 21 of 134

LCD registers function:

Date register read11
Data register (DR) write01

Busy flag and address counter read10
Instruction register (IR) write00

OperationsR/WRS

System Development Structure Frame:

HUB POWER LCD
POWER

LCD

Developer Board
Etrax100

PC

Then we write a LCD device driver including a c program header file and *.c file. When
we have finished the LCD device driver and all is right , we write an lcd application
program . The application realized roll-screen displaying like common big advertising
bulletin board. After that, we aslo try a program about remote control, which uses socket
programming.

Appendix A : LCD device driver header file; (etrax100parlcd.c)
Appendix B : LCD device driver c program file; (etrax100parlcd.h)
Appendix C : LCD application program file; (lcdtest.c)

Appendix A: LCD device driver header file; (etrax100parlcd.c)

/* etrax100parlcd.c */
#include <linux/config.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/sched.h>

 Linux Challenge - 2001
Student Winners

 April 2002
Page 22 of 134

loliver

loliver

#include <linux/malloc.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/ioctl.h>
#include <asm/segment.h>
#include <asm/system.h>
#include <asm/irq.h>
#include <asm/svinto.h>
#include "etrax100parlcd.h"
/* DDRAM (Display Data RAM) addresses at different display locations.
 * 0 19
 * 64 83
 * 20 39
 * 84 103 */
#define LCD_HD44780_MAJOR 125
/* RegisterSelect (RS) = autofd (bit 18 in R_PAR0_CTRL_DATA)
 * Read/Write (R/W_) = strb (bit 17 in R_PAR0_CTRL_DATA)
 * Enable (E) = init (bit 16 in R_PAR0_CTRL_DATA) */

#define LCD_E 0x00010000 /* LCD enable */
#define LCD_RW 0x00020000 /* LCD read/write */
#define LCD_RS 0x00040000 /* LCD register select */
#define PAR_OE 0x00100000 /* Output Enable on par port */
 /* Flags used for the flag field in the etrax100parlcd_struct */
#define LCD_BUSY 0x00000001
#define LCD_NL 0x00000002
#define LCD_MAX_ROWS 4
#define LCD_MAX_COLS 20
typedef struct etrax100parlcd_struct {
 unsigned int flags;
 unsigned char row;
 unsigned char col;
} etrax100parlcd_struct;

static etrax100parlcd_struct lcd_status;
static int lcd_write(struct inode *inode, struct file *file, const char *buf, int count);
static int lcd_ioctl(struct inode *inode, struct file *file, unsigned int op, unsigned long arg);
static int lcd_open(struct inode *inode, struct file *file);
static void lcd_close(struct inode *inode, struct file *file);
static struct file_operations lcd_fops = {
 NULL, /* lseek */
 NULL, /* read */
 lcd_write, /* write */
 NULL, /* readdir */
 NULL, /* select */
 lcd_ioctl, /* ioctl */
 NULL, /* mmap */
 lcd_open, /* open */
 lcd_close /* release */
};
static int row_col_to_addr(int row, int col)
{
 if (row == 0)
 return 0 + col;
 else if (row == 1)
 return 64 + col;
 else if (row == 2)

 Linux Challenge - 2001
Student Winners

 April 2002
Page 23 of 134

 return 20 + col;
 else if (row == 3)
 return 84 + col;
}
static void display_write_instr(byte instr)
{ /* We have dual writes to R_PAR0_CTRL_DATA to make sure that the timing requirements are met */
 *R_PAR0_CTRL_DATA = PAR_OE | LCD_E;
 *R_PAR0_CTRL_DATA = PAR_OE | LCD_E | instr;
 *R_PAR0_CTRL_DATA = PAR_OE | LCD_E | instr;
 *R_PAR0_CTRL_DATA = PAR_OE | instr;
 *R_PAR0_CTRL_DATA = 0;
}
static void display_write_text(byte text)
{ /* We have dual writes to R_PAR0_CTRL_DATA to make sure that the timing requirements are met */
 *R_PAR0_CTRL_DATA = PAR_OE | LCD_RS;
 *R_PAR0_CTRL_DATA = PAR_OE | LCD_RS | LCD_E;
 *R_PAR0_CTRL_DATA = PAR_OE | LCD_RS | LCD_E | text;
 *R_PAR0_CTRL_DATA = PAR_OE | LCD_RS | LCD_E | text;
 *R_PAR0_CTRL_DATA = PAR_OE | LCD_RS | text;
 *R_PAR0_CTRL_DATA = 0;
}
static void lcd_init_int(void)
{ /* Initialization by instruction */
 display_write_instr(0x30);
 udelay(4500);
 display_write_instr(0x30);
 udelay(150);
 display_write_instr(0x30);
 udelay(150);
 display_write_instr(0x38); /* Function set: 8bit, 2 rows and 5x8 dots */
 udelay(50);
 display_write_instr(0x04); /* Display on/off control: all off */
 udelay(50);
 display_write_instr(0x01); /* Clear display */
 udelay(1700);
 display_write_instr(0x06); /* Entry mode set: inc cursor */
 udelay(50);
 display_write_instr(0x0e); /* Display on/off control: disp on, cursor on */
 udelay(50);
}
static int lcd_write(struct inode *inode, struct file *file, const char *buf, int count)
{
 unsigned int i;
 int retval;
 retval = verify_area(VERIFY_READ, (void *)buf, count);
 if (retval != 0) {
 printk("LCD_HD44780: VERIFY_READ error: %i\n", retval);
 return retval;
 }
 for (i = 0; i < count; i++) {
 if (lcd_status.flags & LCD_NL)
 {
 if (buf[i] == '\n')
 {
 if (++lcd_status.row < LCD_MAX_ROWS)
 {
 lcd_status.col = 0;

 Linux Challenge - 2001
Student Winners

 April 2002
Page 24 of 134

 }
 else {
 lcd_status.row = 0;
 lcd_status.col = 0;
 lcd_ioctl(0, 0, LCD_HD44780_CLEAR, 0);
 }
 continue;

 }
 }
if (lcd_status.col < LCD_MAX_COLS)
{
 display_write_instr(0x80 | (unsigned char)row_col_to_addr(lcd_status.row, lcd_status.col));
 udelay(50);
 lcd_status.col++;
 }
else
{
 if (lcd_status.row < LCD_MAX_ROWS)
 {
 lcd_status.row++;
 lcd_status.col = 0;
 }
 else {
 lcd_status.row = 0;
 lcd_status.col = 0;
 lcd_ioctl(0, 0, LCD_HD44780_CLEAR, 0);
 }
 display_write_instr(0x80 | (unsigned char)
 row_col_to_addr(lcd_status.row, lcd_status.col++));
 udelay(50);
 }
 display_write_text(buf[i]);
 udelay(50);
 }
return count;
}
static int lcd_ioctl(struct inode *inode, struct file *file,unsigned int op, unsigned long arg)

{
 switch (op)
 {
 case LCD_HD44780_CAH: /* Cursor at home */
 display_write_instr(0x02);
 lcd_status.row = 0;
 lcd_status.col = 0;
 udelay(1700);
 break;
 case LCD_HD44780_CLEAR: /* Clear display */
 display_write_instr(0x01);
 lcd_status.row = 0;
 lcd_status.col = 0;
 udelay(1700);
 break;
 case LCD_HD44780_SET_DDRAM: /* Set DDRAM address */
 display_write_instr(0x80 | (unsigned char)arg);
 udelay(50);
 break;
 case LCD_HD44780_DISP: /* Display on/off control */
 display_write_instr(0x08 | (unsigned char)arg);

 Linux Challenge - 2001
Student Winners

 April 2002
Page 25 of 134

 udelay(50);
 break;
 case LCD_HD44780_LCD_SHIFT: /* Cursor/display shift */
 display_write_instr(0x10 | (unsigned char)arg);
 udelay(50);
 break;
 case LCD_HD44780_NEWLINE: /* Set new line mode */
 if (arg == 1)
 lcd_status.flags |= LCD_NL;
 else if (arg == 0)
 lcd_status.flags &= ~LCD_NL;
 break;

 case LCD_HD44780_GOTO_XY: /* Move cursor to x, y */
 lcd_status.row = (arg & 0x000000ff);
 lcd_status.col = (arg & 0x0000ff00) >> 8;
 break;
 default:
 return -EINVAL;
 break;
 }
return 0;
}
static int lcd_open(struct inode *inode, struct file *file)
{
 if (lcd_status.flags & LCD_BUSY) {
 return -EBUSY;
 }
 lcd_status.flags |= LCD_BUSY;
 lcd_status.flags |= LCD_NL;
 lcd_status.row = 0;
 lcd_status.col = 0;
 R_PAR0_CONFIG = 0x00000060; / Manual-mode, enable port, immediate mode change */
 lcd_init_int();
 return 0;
}
static void lcd_close(struct inode *inode, struct file *file)
{
 R_PAR0_CONFIG = 0x00000000; / Reset port */
 lcd_status.flags = 0;
}

void etrax_par_lcd_hd44780_init()
{
 printk("Etrax/100 parallel LCD HD44780 driver v0.1 (c) 2000 SunWah_NanDa\r\n");
 if (register_chrdev(LCD_HD44780_MAJOR, "LCD_HD44780", &lcd_fops)) {
 printk("unable to get major %d for LCD_HD44780\n", LCD_HD44780_MAJOR);
 }
}

Appendix B: LCD Device Driver C Program File; (etrax100parlcd.h)

/* etrax100parlcd.h */
/* ioctls for etrax parallel lcd driver */
#define LCD_HD44780_CAH _IO('l', 0x10)
#define LCD_HD44780_CLEAR _IO('l', 0x11)
#define LCD_HD44780_DISP _IOW('l', 0x12, char)
#define LCD_HD44780_SET_DDRAM _IOW('l', 0x13, char)

 Linux Challenge - 2001
Student Winners

 April 2002
Page 26 of 134

#define LCD_HD44780_LCD_SHIFT _IOW('l', 0x14, char)
#define LCD_HD44780_NEWLINE _IOW('l', 0x15, char)
#define LCD_HD44780_GOTO_XY _IOW('l', 0x16, short) /* 0xff00 = x and 0x00ff = y */

Appendix C : LCD Application Program File; (lcdtest.c)

/*lcdtest.c*/
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int pos=0;
int length=47;
int ia=0;
int endf=0;
void display(char *buf);
void adjust(char *oldbuf,char *newbuf);

int main()
{
char o_buf[]={"abcderr\nghijklmnopq\nr\nstuvwxyzasd\nasdasdasdasddf"};
char n_buf[length];
printf("long=%d\n",length);
while (!endf)
{
 adjust(o_buf,n_buf);
 printf("ia=%d\n",ia);
 display(n_buf);
}
return 0;
}

void display(char *buf)
{
int lcddev;
int m;
int size=length;
printf("size=%d\n",size);
lcddev=open("/dev/lcd",O_WRONLY);
if (lcddev==-1)
 {
 printf("Cann't open lcd.\n");
 }
write (lcddev,buf,size);
for (m=0;m<=50000000;m++)
 {}
close (lcddev);
}
void adjust (char *bufa,char *bufb)
{
int row=0;
int ib;
int hpos=0;
int num=0;
for(row=0;row<4;row++)
{

 Linux Challenge - 2001
Student Winners

 April 2002
Page 27 of 134

again: if (row==1)
 {
 hpos=ia;
 printf("hpos=%d\n",hpos);
 }

 if (row==4) goto ends;
 for(ib=0;ib<20;ib++)
 {
 bufb[num]=bufa[ia];
 if (bufb[num]=='\0')
 {if (row==0) endf=1;
 else goto ends;
 }
 else if (bufb[num]=='\n')
 {
 row++;
 num++;
 ia++;
 goto again;
 }
 else
 {
 num++;
 ia++;
 }
 }
}
ends: length=num;
 ia = hpos;
}

 Linux Challenge - 2001
Student Winners

 April 2002
Page 28 of 134

Paper Submitted by:
Hu Jiangtao

(jthu@fudan.edu.cn)

University:
Fudan University

Country:
China

 Linux Challenge - 2001
Student Winners

 April 2002
Page 29 of 134

KDB Debugger Enhancement -
(Add addditional functionality/operations/hardware support to

SGI kernel debugger, i.e., add support for POSIX threads)

Abstract

KDB lacks the keyboard history function, which sometimes may annoy the user,
especially in the case of typing long commands. This paper analyzes the problem, designs
a solution and delivers the installation guide of my patch file.

Keywords: KDB Keyboard History Function

1. Problem Statement

As we know, KDB (SGI kernel debugger) lacks some convenient functions, such as
keyboard history function. It sometimes may annoy the user, especially in the case of
typing long commands.

2. Analysis & Design

To add the keyboard history function, we need solve several problems. One is to
distinguish the special keys, such as UP and DOWN arrow key, from the common
character keys. Another is to record command history and provide a way to traverse the
history. The last problem is to issue the history command as if a user types it.

2.1 Special Key Identification

After analyzing the KDB(KDBv1.8-2.4.2) source code, we find out that the
implementation of KDB keyboard IO function can be divided into two parts, an
architecture dependent part and an architecture independent part, just as Fig.1 shows.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 30 of 134

 Linux Challenge - 2001
Student Winners

 April 2002
Page 31 of 134

From Table 1, we can find out that the identification procedure of special keys happens in
get_kbd_char() function. It is rather a simple job, since the scancode does the work.
Another problem appears: the special key identification happens in the function of the
lowest level, but logical process takes place in upper level. How could we deliver the
information to the high levels? There are several ways to solve the problem, such as
global variables, function return values, and additional parameters, etc. To minimize
source modification and the pollution of global variables, we choose the additional
parameters method. For example, the interface transformation of get_kbd_char() is
shown as follows:

2.2 Keyboard History Record

Many types of data structure can be chosen to implement the command history record,
such as array, list, etc. Considering the running efficiency and implementation simplicity,
we choose circular array[2]. Its definition is as follows and Fig.2 shows the relation
between the defined variables.

Primary Data Structure

 Linux Challenge - 2001
Student Winners

 April 2002
Page 32 of 134

The following code
indicates how to traverse the command history.

2.3 Command Issue Emulation

To emulate a history command, we only need to copy the command from the history
buffer to the current command buffer and print it to the screen, as if the user typed it. A
little challenge is how to print different commands in the same line as the user traverses
the command history using UP or DOWN arrow key. The implementation is rather
simple. Just use �\r� to locate the cursor to the head of the current line, print a blank line
to erase the original content. Again use �\r� to move the cursor to the head, print the
current command buffer as if the user typed it and wait for the user to input.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 33 of 134

3. Installation Guide

Installation procedure:
1. Download linux kernel 2.4.2 source code, suppose untar files to /usr/src/linux;
2. Copy my patch file(embedded KDBv1.8-2.4.2) kbh_kdb1.8-2.4.2.patch to

/usr/src/linux;
3. Change the current directory to /usr/src/linux;
4. Type �patch �p1 < kbh_kdb1.8-2.4.2.patch� and press enter key;
5. Recompile linux kernel, with configuration CONFIG_KDB;
6. Add the new kernel entry to lilo configure.
7. Restart with the new kernel and press break key to activate KDB.

That�s all.

Reference

1. Linux Kernel 2.4.2 source code

2. KDBv1.8 source code

 Linux Challenge - 2001
Student Winners

 April 2002
Page 34 of 134

Paper Submitted by:
Mika Pruikkonen

University:
Helsinki University of Technology

Country:
Finland

 Linux Challenge - 2001
Student Winners

 April 2002
Page 35 of 134

 Investigate Completeness and
Usefulness of SCTP Functionality

Project Description and Objectives

The challenge was to investigate the completeness and usefulness of SCTP
functionality by developing certain kinds of applications and/or investigating parts of the
protocol and different implementations. I decided to concentrate on the first task
mentioned in the challenge, i.e., developing a discovery/test tool for SCTP.

Methodology

After reviewing the current sctp implementations, the following observations were
of the most significance:

! There exists two quite complete open source userspace implementations,
and many more commercial ones. The oss implementations are the reference
implementation and an implementation created by the Computer networking
technology group of the University of Essen and Siemens. The latter
seems more complete and has an active development and user community.

! The linux kernel implementation (called lksctp) is still a work in
progress, and doesn't currently provide all the protocol features. There
are also kernel implementations being developed for other operating
systems.

! lksctp will implement the socket API defined in draft-ietf-tsvwg-sctpsocket-01.txt,
which is a proposed socket API for sctp. The Essen's userspace implementation is
also developing support For this API, and the development team has announced that
it will provide a complete implementation of it in its next release.

The reference implementation's API and the original API of the Essen's implementation
follow the application API described in RFC2960. However, since all the real kernel
implementations will implement the socket API, it seemed the best choice to implement
the tool using the socket API.

Since none of the oss socket API implementations are currently complete nor follow the
draft, I decided to only try to develop the application For the lksctp kernel
implementation.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 36 of 134

The challenge mentions as an example a tool that can be used to investigate the features
of the tcp protocol. The example tool is controlled by command-line options, but because
sctp is message based, I will use a more interactive approach (the options need to be
Controllable on a per-message basis.)

In the early development I had one computer running the kernel implementation, and on
another I had the Essen's userspace Implementation. When I got to the level where I had
a working application, I tested it by running multiple instances of it on the computer with
the kernel implementation. I also tried it with the example applications that came with the
userspace implementation. It seemed to be a nice tool to test other applications, and I got
some more ideas from that.

Later in development I decided to install the kernel implementation on The other
computer too, so that I could test how my program would work when communicating
with itself on separate machines. I had to update the lksctp version and recompile the
kernels several times during development because I wanted to test and use the new
features that were being developed by the lksctp developers.

Results

During development I learned the limitations of the current implementation of lksctp. It
doesn't currently support handling of multiple associations with association ids or proper
handling of notifications, which means that handling of multiple associations is currently
pretty awkward. Also, things like setting the socket options or automatically assigning
the local host and port aren't yet possible. The implementation isn't perfectly stable yet
either, in heavy use the kernel panics quite frequently.

It should be noted that at this stage of development it is not possible to develop an
application that would work as-is in the future, since the socket API interface that lksctp
provides doesn't yet comply with the socket API draft, and the draft can also still change.

However, here's what I achieved (from the tool's help):

Usage: sctpdiag [OPTION]...
sctpdiag is a sctp protocol development and analyzing tool. The commands prefixed with
a slash are to be used interactively after the tool has been started. All lines not beginning
with a slash are sent to the receiver identified by the prompt.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 37 of 134

-H, --local=host | -P, --local-port=port specify local and
-h, --remote=host | -p, --remote-port=port remote hosts
/r, /remote host port set/change the remote host
/s, /stream n switch to stream n
/p, /ppid n set ppid to n
/u, /unordered toggle the MSG_UNORDERED flag
/l, /loop n send the message n times
/w, /wait n wait for n ms before each send
/g, /generate [n] [m] generate a message with length between
 n and m, or exactly n, or random if no arguments are

specified. This can be used together with /l, /w, etc.
/q, /quit exit the tool
/?, -?, --help display this help

This is a general purpose tool, which can be used for debugging and testing other sctp
applications. One can also launch multiple instances of the application and utilize them to
investigate the protocol and the current implementation. When lksctp developers
introduce new features, they should be quite easy to add to the application.

Sctpdiag is, in my knowledge, currently the only application using a open source sctp
implementation which provides fully two-directional communication with the possibility
of using multiple streams. In lksctp development, there has so far existed only one sctp
application, which the developers used for testing and which enabled only either sending
or receiving simple messages, and it's user interface was only appropriate for debugging
the kernel implementation itself, not for helping in development of other applications or
for wider testing between different implementations or inside the lksctp implementation.

An example session with two sctpdiag's running in separate machines:

mp@host1$./sctpdiag -H host1 -P 1326 -h host2 -p 2118
Welcome to sctpdiag. Type /? for help.
Ready to send...
Listening...
host2:2118 s:0> Testing..
Notification: COMM UP
Received: stream: 1, ssn: 0, body: I prefer this stream.
host2:2118 s:0> /ppid 1320
host2:2118 s:0 p:1320> Oh, that's ok. Got to run, bye.
Received: stream: 1, ssn: 1, body: Ok, bye

 Linux Challenge - 2001
Student Winners

 April 2002
Page 38 of 134

mp:2118 s:0 p:1320> /quit
Mp@host1$

[mp@host2]$ sctpdiag -H host2 -P 2118 -h host1 -p 1326
Welcome to sctpdiag. Type /? for help.
Ready to send...
Listening...
Notification: COMM UP
Received: stream: 0, ssn: 0, body: Testing..
host1:1326 s:0> /s 1
host1:1326 s:1> I prefer this stream.
Received: stream: 0, ssn: 1, ppid: 1320, body: Oh, that's ok. Got to
run, bye.
host1:1326 s:1> Ok, bye
Notification: SHUTDOWN COMPLETE
host1:1326 s:1>

The second sctpdiag in the example is still ready for new connections. It can also have
multiple associations open with different peers simultaneously, and it can change the
active peer with the /r command. The /l and /g options are nice if you need so send large
amounts of data. The /u option isn't yet implemented in lksctp, but it will work as soon as
they get it done. Currently it seems as it works but the receiver will see it as a normal,
in-band message.

There are several features that could be implemented to sctpdiag, such as more detailed
notifications, association handling, automatical localhost configuration
(INADDR_ANY), adding and removing network interfaces, and viewing and setting
socket options, but we have to first wait for the lksctp developers to get them
implemented.

You can get sctpdiag from: http://www.hut.fi/~mpruikko/sctpdiag/. You can find more
detailed documentation in the packages. Don't hesitate to contact me by e-mail
<mika.pruikkonen@iki.fi> if you have any questions or problems.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 39 of 134

Paper Submitted by:
Tristan Leteutre

University:
Ecole Centrale Paris

Country:
France

 Linux Challenge - 2001
Student Winners

 April 2002
Page 40 of 134

VideoLAN
A Complete MPEG2 Streaming Solution

I. Description of VideoLAN

The purpose of VideoLAN is to offer a complete MPEG-2 streaming solution, by
broadcasting MPEG-2 high-quality streams on a Local Area Network (LAN). By
"streaming solution" we mean : a way to broadcast a video stream, to decode and
display it on each computer and to manage several streams at the same time.

That is why the project has been split in three parts: the VideoLANclient, the VideoLAN
server and the VideoLAN channel server.

I. 1. VideoLAN client

The VideoLAN client is a software MPEG-1 and MPEG-2 decoder, designed to be fast,
extensible and portable, written in C.

The client is able to read streams from a hard drive, a DVD or a network input. We
wanted it to support differents display modes, such as X11, Linux framebuffer, SDL or
GGI. Moreover, it supports video card hardware acceleration.

Installed on spectators computers, the VideoLAN reads the MPEG 2-TS network
stream broadcasted by the VideoLAN server, decode it and display it on the screen.

I. 2. The VideoLAN server

The purpose of the VideoLAN server is to broadcast several MPEG 2-TS streams
through a network. The inputs can be a hard drive, a DVD, a satellite card or hardware
real-time encoded video.

The VideoLAN server is written in C++.

I. 3. The VideoLAN channel server

The VideoLAN channel server allows each spectator to switch between the network
streams, by simply selecting a channel like with a television. When a client wants to
change channel, it makes a request to the channel server which acts on the network (with
SNMP, for example) so that the client should receive the right channel.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 41 of 134

II. Methodology

The developpement of the VideoLAN client has included a lot of researches
concerning the MPEG decoding and optimisations. The program had been several times
re-written, to design a full modulable solution.

The whole network solution, especially concerning our LAN at CentraleParis, has been
very much studied to make best profit of our network hardware, and to be able to use
VideoLANon it.

The VideoLAN team, composed of students of Ecole Centrale Paris, France, wanted
to use classical tools and organisation of OpenSourceproject, to ensure a quality of
developpement.

First, we released the VideoLAN client under the GNU/Linux licence in February 2001,
the Channel Server in may 2001 and the Server in October 2001.

Then, we use the project tool "Concurrent Version Service" (CVS) and mailing-list
tools such as "listar", to improve the communication between all the developpers.

We also created a Web Site <http://www.videolan.org/> where world-wide developpers
can be aware of our progresses. They can also download the sources of the project, and
 get infos such as news, TODO lists and browse the CVS-Web.

The project also gave birth to sub-projects, such as mpeg2dec and libDVDcss. We use
 external libraries like libDVDread and ucd-SNMP, and drivers form LinuxTV.org for
specific cards. Our implication and contribution to the OpenSource world is one of our
motivations.

III. Results

Today, the VideoLAN client is one of the best DVD Player and MPEG2 decoder, and
has many features in the interface such as chapiter or title selection, fast play or
rewind. With all MMX optimisations and video optimisations, are able to play the 25
fps of a DVD on a PIII-450MHz. We also support MPEG 1 streams reading,
VideoCD (VCD), MPEG-2 Sytem (PS and TS).

The Channel Server support the VLAN (Virtual LAN) solution to change channels:
Streams are broadcasted in several independant VLANs, and the Channel Server
changes client's VLAN depending on channel. We are currently studying for multicast
support.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 42 of 134

The VideoLAN server is able to read from several inputs: files, DVD, a satellite card and
a real-time encoding card.

The last tests proved that this solution works: we broadcasted a DVB satellite channel, a
DVD and a show recorded in real-time with a video camera on the network of the
Centrale Paris Residence, France. Althougth this network is a 10-100MBits Ethernet
with an 155MBits ATM backbone, the 1000 students of this residence watch one of this
three channels, and change as the wanted.

That is why the whole VideoLAN project is far the most advanced MPEG-2 streaming
solution in the world. And with the help of world-wide programmers and financial
partners, we hope that this GNU/Linux project will ensure its success.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 43 of 134

Paper Submitted by:
Peter Rost

University:
Berufsakademic Dresden

Country:
Germany

 Linux Challenge - 2001
Student Winners

 April 2002
Page 44 of 134

 Linux Challenge - 2001
Student Winners

 April 2002
Page 45 of 134

 Linux Challenge - 2001
Student Winners

 April 2002
Page 46 of 134

 Linux Challenge - 2001
Student Winners

 April 2002
Page 47 of 134

Paper Submitted by:
Klaus Wehrle

(klaus@wehrle.de)

University:
University of Karlsruhe

Country:
Germany

 Linux Challenge - 2001
Student Winners

 April 2002
Page 48 of 134

KIDS
KARLSRUHE IMPLEMENTATION
OF DIFFERENTIATED SERVICES

 Linux Challenge - 2001
Student Winners

 April 2002
Page 49 of 134

A Flexible and Modular Framework for
Individual Traffic Control in the Linux Kernel

Team: Klaus Wehrle, Jerome Freilinger
klaus@wehrle.de, s freili@ira.uka.de

1. Introduction

In the last few years, the Internet Engineering Task Force (IETF) spent a lot of research
efforts in investigating several kinds of mechanisms to provide better services than the
traditional best effort delivery (the so called Quality of Service � QoS). Many
applications would benefit from certain guarantees from the network, e.g. video
streaming, voice over IP, etc. These guarantees can be assured by extending Internet
routers with certain mechanisms, like different scheduling of queues, metering and
dropping of network packets. Especially the Differentiated Services architecture
developed by the IETF [BBCD+98] is designed of small building blocks (Per Hop
Behaviors) composed to offer quality based services. To implement and use this QoS
features it is extremely important to have an implementation architecture that offers the
possibility to build new QoS models rapidly from elementary entities. The presented
Karlsruhe Implementation of Differentiated Services (KIDS) for the Linux OS fulfills
these requirements. It can be used in Software Routers based on Linux and in low and
middle-end routers based on embedded-Linux. It was also successful used in a pervasive
computing environment using a Compaq iPaq.

2. Objective of the KIDS framework

The objective of KIDS is to offer elementary QoS modules for the Linux protocols,
which can be combined and linked together to common QoS elements, like traffic shaper,
token bucket, classifier, etc. The suite also offers a variety of queues and scheduling
mechanisms like priority queueing, weighted fair queueing, round robin, etc. In the
following, these QoS elements are called Behavior Elements. In the next section a
more detailed classification is given. The main principle in building this implementation
architecture was the possibility to build new QoS behavior quickly from the existing pool
of elementary Behavior Elements. This can mostly be done by varying the elementary
modules and connecting them in a special manner. The following example should
motivate the architecture of the proposed model: A token bucket is a widely used model
to meter a certain network flow and to monitor its conformance to Service Level
Agreements (SLAs). Traditionally a token bucket is metering incoming flows to their
conformance. If the negotiatedrate is not exceeded, the packets will be forwarded �
otherwise they will be discarded. This method of metering a flow is well known, but in
some scenarios (i.e. AF PHB in DiffServ networks) the packets should not be discarded.
They should either be marked with a lower priority and enqueued in an alternate

 Linux Challenge - 2001
Student Winners

 April 2002
Page 50 of 134

queue which is served with a lower priority. Or in other scenarios, two token buckets
should be combined to control the peak rate and the average rate or the token bucket
should be packet-oriented instead of byte-oriented. With existing implementations,
new token bucket modules, a marker a priority queueing module, etc. have to be
implemented. Secondly, it is always a problem to integrate QoS elements into the right
position within the protocol stack. For instance, it is important whether a token bucket is
working on the IP layer – before the routing has been done – or at the output queue of a
certain interface. In the first case all packets forwarded by IP will be considered in the
token bucket meter, whereas in the latter case, only the packets leaving on one interface
will be metered. In a third case only the packets leaving a host should be considered. It is
obvious that in a protocol like IP, a lot of possible places to integrate QoS behavior can
be identified (as shown in section 2.1). As a result of this, a fast development of modules
for investigating new network behavior, as i.e. new QoS behaviors, is very
time-consuming with existing operating systems, since they have mostly implementations
for specific QoS architectures [BSSo00, AlSK99]. Each time, new implementations have
to be developed. The reuse of existing implementations is very complex.

The presented modular architecture with its elementary QoS modules, and the individual
linking of them, would solve these problems and allow to build immediately any QoS
behavior for an Internet router or host – mostly without implementing new models. The
existing pool of elementary QoS behaviors, and its smart integration into the Linux
implementation of Internet Protocol, offer on the one hand the examination of real IP
behavior and on the other hand the possibility to build and evaluate rapidly new QoS
behavior in real systems. In the next few sections the basic architecture of the KIDS
(Karlsruhe Implementation of Differentiated Services) QoS architecture will be
presented. First the principle of Hooks is explained, which are strategic points for
including QoS elements into protocol stacks. Subsequently the five different
kinds of Behavior Elements and rules to concatenate them will be introduced. It
should be mentioned that the pre-sented KIDS architecture do not need any modification
within a standard Linux Kernel. Standard interfaces like traffic control and Netfilter have
been chosen to create the concept of KIDS’ Hooks. Figure 2 illustrates the KIDS
architecture by an example. Three service classes should be distinguished: A Premium
class, offering a high priority service with low delay. The flows of the Premium class will
be metered by a Leaky Bucket and shaped at the output interface. A second class should
offer a better service than Best Effort with a statistical guarantee of bandwidth. This will
be achieved by a weighted fair queueing scheduler. The metering will be done by a token
bucket. Non conforming packets will not be discarded, but degraded to the Best Effort
service, which builds the third service class. The classification to the three service classes
is done by a multi-field classifier. This example is a possible implementation of the
well-known ’Two bit architecture’, which is described in details in [JaNZ99]. To keep the
example simple, only the Layer2-Hooks of interface eth0 and IP-Forward are shown.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 51 of 134

2.1 Protocol Hooks

When Qualtiy of Service behavior should be introduced into an existing protocol, one
basic problem is the point at which the protocol is extended with the new Behavior
Elements. E.g. regarding the Internet Protocol, five strategic points can be identified – to
realize these hooks, the Netfilter interface was used and extended to a common interface
for KIDS behaviors. But KIDS-Hooks are not limited to Netfilter hooks, they can also be
realized in every network protocol by simply inserting a simple function.

Hooks can be distinguished in the set of packets passing the point they have been
inserted, e.g. the IP Post Routing-Hook represents the set of all packets leaving the
IP node on an interface - whether they have been forwarded, or created from the host:

� IP PRE ROUTING: All packets arriving on a network interface will pass this hook
before routing is processed. Consequently all incoming packets will be processed by
the Behaviors attached to this hook.

� IP Local In: All packets arriving for the local host will pass this hook after the
routing is processed and before they leave IP for the upper protocols.

� IP Forward: All forwarded packets will pass this hook after the routing.
Consequently it is the right point to perfom QoS mechanisms on routed packets.

� IP Local Out: This Hook is suitable for all packets leaving from upper layers,
before routing is processed.

� IP Post Routing: The last Hook can be used to perfom
any action on all packets leaving the host on a network
interface card, whether they are forwarded or created
from upper protocol layers.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 52 of 134

For each network interface, three additional Hooks can be identified: L2 Input xxL2
Enqueue xx and L2 Dequeue xx, where xx is the name of the network interface
card in the Linux OS. The first one is located at the entry of a packet in the
receive-function and the other two are located around the output queue of a network
interface card. These Hooks are the right point to add specific behaviors operating on
outgoing queues, like priority queueing, traffic shaping,etc. (refer Fig. 2).

In this description the focus is only on the Internet Protocol Version 4 and the underlying
layers. In other protocols like IPv6, TCP, UDP, etc., also Hooks are integrated yet or can
be added easily at strategic places to integrate QoS behavior in the network stack.

As described above, a Hook is a place within a protocol where QoS behavior can be
added. The Behavior Elements included at such a hook are elementary models offering a
certain behavior. They will be described in the following section.

2.2 Behavior Elements

A Behavior Element (BE) is comparable to a black box, which offers a specific basic
behavior. A BE consists of one in-gate,n out-gates and a certain processing behavior
inside. At the in-gate a packet enters the box and receives a certain manipulation
inside the module. Dependent on the calculation within the box, the packet leaves on a
certain out-gate. Behaviors can be concatenated after each other. Consequently, the
treatment a packet receives within a BE decides which way it will proceed
and which quality it receives.

Two kinds of gates (interfaces) of Behavior Elements and Hooks can be distinguished:
packet-gates (abbreviated as) and non-packet-gates (�). The main difference between
them is, that between two packet-gates IP-packets are exchanged, and between
non-packet-gates only messages to request (dequeue) packets are exchanged.

The principle rule in the KIDS architecture is, that only gates from the same kind can be
connected to each other. The two different types of gates and the interaction between
them are described more detailed in section 2.3.

As mentions before five kinds of Behavior Elements can be distinguished (ref. Fig. 2.2).
In the following they will be introduced in detail:

! (conventional) Behaviors (BHVR) are elementary QoS elements which operate on
IP packets. As shown in Fig ure 2.2, a Behavior has only one in-gate and up to n
out-gates, where n depends on the particular Behavior. E.g. a Token Bucket has two
out-gates, one for conform packets and one for non-conform packet. Behaviors can be
interconnected between one another without fulfilling other requirements.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 53 of 134

Example Behaviors are Token Bucket, Marker, Dropper, Classifier, Random Early
Detection (RED), etc.

! Queue (QUEUE): Queues are well known packet queues. Packets can only be
enqueued and dequeued with the appropriate kinds of Enqueue and Dequeue
Behaviors. Several types of Queues have been implemented in KIDS, e.g.
Fifo-Queue, Shaping-Queue, EDF-Queue, etc.

! Enqueue Behavior (ENQ BHVR) are specialized Behavior Elements for enqueueing
a packet into a queue. The queue is identified by its name and an according Enqueue
Behavior should be used. One special characteristic of an Enqueue Behavior is the
missing out-gate. Whether the packet is inserted into the queue, or it has to be
dropped. Enqueue Behaviors can be connected to out-gates of any Behavior module.
The detailed procedure of exchanging messages and packets between Behavior
Elements is described in section 2.3.

� Dequeue Behavior (DEQ BHVR) can be used to dequeue a packet from a certain
queue. E.g. a Fifo Dequeue module removes the first packet from the named
queue and sends it to its out-gate. Dequeue Behavior modules can only be connected
to an �-gate of a L2 Dequeue-Hook or a Dequeue-Discipline. After a Dequeue
Behavior all kinds of Behaviors can be connected to the packetgate.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 54 of 134

� Dequeue Discipline (DEQ DISC): A Dequeue Discipline is a strategy to choose the
next Dequeue Behavior for serving a queue. Dequeue Disciplines are playing a
very important role in reaching different service classes within a network. Examples
for Dequeue Disciplines are Priority Queueing, Weighted Fair Queueing, Round
Robin, etc.

2.3 Interactions between Behavior Elements

With the just presented five types a simple mesh of Behavior Elements can be built and
connected to Hooks. But it is important to understand how a packet traverses this mesh
and which interactions can occur between the Behavior Elements. The following section
describes the sequence of events on two example concatenations of Behavior Elements.

Interactions

between packet-gates (- junctions):

Several Behavior Elements with packet-gates can be arranged into one new model to
create a new QoS Behavior. At the connections between the -gates, IP packets are
exchanged. Figure 2.3 shows an example. The Hook sends an IP packet to the Token
Bucket-Behavior. When the module has completed its operations on the packet, it will be
send further, when a module is connected on the dedicated out-gate. That means in the
example, that a SLA-conform packet (case a) will leave on the In-gate (In-Profile) of the
Token Bucket; If it is not conform the packet will leave on the Out-gate to the Dropper.
If no module is connected to a Behavior on the dedicated port, or the Behavior has no
port, the packet will be sent back to the previous module where the packet came from.

One can see, that a packet first traverses a chain of Behaviors and then goes recursively
back to the Hook, where the normal protocol processing will be continued.

This is the normal procedure, but there are two possible exceptions. The first is when a
packet has reached an Enqueue Behavior, which will enqueue it into a Queue. The
second exception is a Dropper that marks the packet for discarding. In both cases, the
modules will send back an IP packet to the hook, but with a return code like Packet-

 Linux Challenge - 2001
Student Winners

 April 2002
Page 55 of 134

Enqueued or Discard-Packet. The discarding of a packet will be done in the Hook,
because all Behaviors between the Hook and the Dropper have to be informed about the
loss of the packet. E.g. a token bucket has to put back the tokens of the discarded packet
into the bucket, because it has not consumed them.

Interactions at non-packet-gates (O-junctions):

On O-junctions (between Dequeue Disciplines or between Dequeue Disciplines and
Dequeue Behaviors) no packets will be exchanged. Dequeue Disciplines will first
decide which Dequeue Behavior will be asked to dequeue a packet from a queue. This
mechanism will be triggered from the Dequeue-Hook sending out a
Request-Packet-message to the first dequeue discipline or directly to a Dequeue
Behavior, if no scheduling algorithm is used.

A Dequeue Discipline decides on which of its out-gates the Packet-Request will proceed.
Any combination of Dequeue Disciplines can be built, but finally a Dequeue
Behavior has to be called. In Figure 2.3, the Priority Queueing module first calls on the
gate with the highest priority. The Dequeue Discipline connected to that gate proceeds
with its own scheduling mechanism. In Figure 2.3 theWeighted Fair Queueing module
proceeds on gate 1.

Each possible chain of Dequeue Disciplines has to conclude with a Dequeue Discipline
which executes the Packet-Request by dequeueing a packet from the Queue. On success
and if a Behavior is connected, the packet will proceed on the c-gate of the
DequeueBehavior. This follows the same procedure as described previously about
c-junctions. When the Dequeue Behavior receives back the packet, it is sent recursively
back trough the Dequeue Disciplines to the Dequeue-Hook.

If no packet can be dequeued, the Dequeue Behavior returns a No Packet-ID to the
previous Dequeue Discipline, indicating that the dequeue-operation failed. Then,

 Linux Challenge - 2001
Student Winners

 April 2002
Page 56 of 134

the Dequeue Discipline can choose – according to its algorithm – another �-gate to
request a packet or it returns the No Packet-ID to its predecessor. On a successful
dequeue, the hook starts the transmission of the packet on the network interface.

As mentioned above, the dequeueing is triggered by the Dequeue-Hook. Normally,
Packet-Requests will be initiated by the network interface, when it has finished the
transmission of the previous packet and is now able to transmit the next packet. But if the
interface has been idle for a while, it would not start a new request. Therefore, the
Enqueue-Hook can initiate a Packet Request, when he just inserted a packet into one of
the output queues of the interface. Such an indication only starts a when the NIC is in idle
state.

2.4 Specification language

To manage the creation, destroying and concatenation of Behavior Elements a special
language has been developed. With this commands, arbitrary Quality of Service Behavior
can be build from existing elementary modules. The configuration can be made manually
be using the specification language or by using a graphical user interface wich allows the
management of the QoS Behavior Elements by simple drag ’n drop. The GUI is also able
to load the current KIDS configuration from a router and able to submit the change that
has been done by the administrator. A sample screenshot of kidsconfig is shown in
appendix A.

In the following the commands are shortly described:

CREATE bhvr class bhvr type bhvr name
DATA {private data}* END

Creates a Behavior (QUEUE, BHVR, ENQ BHVR, DEQ BHVR, DEQ DISC) from a
certain type (Dropper, Fifo Queue, Marker, etc.) with the given bhvr name.
The first three parameters are equal to all possible Behaviors. This is followed by an
optional part, where Behavior specific parameters can be set, as for example RATE =
64.000kbps.

CONNECT bhvr class1 bhvr name1 TO
{(bhvr class2 bhvr name2 gate) | (HOOK
hook name)}+ END
Appends the Behavior bhvr name1 after Behavior bhvr name2 or after the given
Hook. Because the second Behavior can have more than one output gate, it has to be
specified on which gate the second Behavior Element should be connected.

CHANGE bhvr class bhvr name DATA (private data to be changed) END

 Linux Challenge - 2001
Student Winners

 April 2002
Page 57 of 134

Changes the private parameters of the given Behavior. Only the listed parameters will be
changed.

DISCONNECT bhvr class bhvr name gate END Removes the connection, that leaves
on the gate of the Behavior.

REMOVE bhvr class bhvr name END Removes a Behavior from the Kernel. This is
only possible, if the Behavior has no more connections.

3. Performance Evaluation

This part shows that the overhead of fine granular QoS modules is not reasonable higher
than with monolithic QoS implementations. It is obvious that this architecture has, due to
the simple and elementary QoS models, a certain overhead to switch between consecutive
Behavior Elements. As measurements have shown the handover from one Behavior
Element to the next takes only 17 CPU cycles at an average. The actual value varies in
cause of caching effects and memory access. This shows that it is not very time
consuming to build a QoS behavior from many basic elements instead of unsing
monolithic and unflexible QoS implementations.

Another performance problem of standard PC hardware is the missing of precise clocks
and timers to offer a highresolution traffic shaping in software routers. Normally,
standard PC hardware is only able to shape traffic with a precision of 100 Hz to 1000 Hz.
At the University of Karlsruhe a new technique have been implemented to realize kernel
timers up to a resolution of 1.000.000 Hz. This timer, called UKA-APICTimer
[WPRM+01] has been used in the KIDS architecture to realize a high precise Earliest
Deadline First queue. This queue can be combined with some other basic modules to a
Leaky Bucket or a traffic shaper.

And the best proof of the performance and correctness of the KIDS implementation is,
that it runs, runs and runs. It was tested over a long time period and also in routers with
Gigabit-Interfaces forwarding packets up to 800 Mbps with quality of service support. It
was also successfully ported to be used in a Compaq iPaq.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 58 of 134

4. Conclusion

In this contribution, an implementation architecture for the simple and rapid creation of
Quality of Service mechanisms in the Linux Kernel (v2.4) has been presented. The
modules can easily be inserted into the TCP/IP stack of the Linux OS without the need
for any kernel modification.

The creation and evaluation of Quality of Service mechanisms can easily be done by
using the elementary QoS models and concatenating them in the desired way. Common
models for queue scheduling (priority queueing, weighted fair queueing,
round robin, etc.), metering (token and leaky bucket), classifying (multi-header-field,
DS-codepoint, etc.) and forming of data flows are provided.

References

[AlSK99] W. Almesberger, J. Salim and A. Kuznetsov. Differentiated
Services on Linux. Draft-almesberger-wajhakdiffserv-linux-00.txt,
February 1999. Internet Draft.

[BBCD+98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss. An
Architecture for Differentiated Services. RFC 2475, December 1998.

[BSSo00] T. Braun, M. Scheidegger, G. Stattenberger and other.
A Linux Implementation of a Differentiated Services
Router. Proceedings of Networks and Services for
Information Society (INTERWORKING�2000), October 2000.

[JaNZ99] V. Jacobson, K. Nichols and L. Zhang. A Two-bit Differentiated
Services Architecture for the Internet. RFC 2638, July 1999.

[WPRM+01] K. Wehrle, F. Phlke, H. Ritter, D. Mller and M. Bechler.
Linux Netzwerkarchitektur (Linux Networking Architecture).

 Linux Challenge - 2001
Student Winners

 April 2002
Page 59 of 134

Addison-Wesley, December 2001

 Linux Challenge - 2001
Student Winners

 April 2002
Page 60 of 134

Paper Submitted by:
UWE Walter

(walter@tm.uka.de)

University:
University of Karlsruhe

Country:
Germany

 Linux Challenge - 2001
Student Winners

 April 2002
Page 61 of 134

�������� �	��
�
�� �
��	 �
���	� ��	 ��� �
�
� ��	���

��� ������	
��
��� ������
���������	
��	��
 ��������������	���

��������� �	
����
����

���������� �	 �
�������

������� �
�������� ����
��

� �������	�
��

�������� ���� ������ ������ �� ����� ��� ���
����� �� ����� ��� �������� ��
�������	 � ��� �� �����
������ ����
��� ����������� �� ���
��� �
����� �� ���
��� ������ ������� �� ����� ������������� ��� �������� ����� ������
�� ��� ���� !����� ��� ��
� �������� ���� ��� ���"������ ������ ����� ��"��������� ��
���� ��� ���������� �� ���
��� ���� #� � ��� ��� ���� ���
��� ����� ��� ����� ���
����� �� ���������� ���
����� �� ����������

� �
����
���

#��
� ��� ���� $%& '(���
��������� ��������
�������� ��)� ���� �"������ ���� � ������������ ���������

��������� *'$(+,-./0 ���
� ����� ��� ����������� �� �������� ���������� ���� �
���������� ���"���
�� 1��
 ���� !����� ���� ���� �������
�� ������� �� ���� �� �
������ ��� ���
��� ����� ���
������ ������������� ���
������� ���"���
� ��������� �� ��� �������� '$(�� +2., 34	 ���
� ����� ������ �� ���������� ��������� ��
�
2,, ��� 3���)�� ���� �� ��� ������ ���������� ��� ������ �� �� ����� ���
���� �� ����
��� �� ���� ��� �

���
��� ������ ���� � ���������� ����
������ ���!�����

1� ����
� ���� ���Æ
���
�	 ��� ���� !����� �������� ��� '$(�� �5+6������ ��
����
����� ���� � �������)���� ��
277 34� (����"������ ��� ���� �����)�� ������� ��� ��������� ���������� �� 27 ��	 ���
� ��������
���� �������
�� ��� ����)���� ��� ��� ���������� �� ����� ���
����� ���
������ %� ����� ���� �������� ����� �� �� ���������
��� �������� �� ����� ���������� �
����� �� ������ �� ���� ���� �

������� ���� ���� � ������
��� ��)������ ��
27 �� *���
� ������� �� � ���� ����� �� - ��0�

%�� ���� �� �� ��� ���8 ���� ��� '������ ���
����� ������	 $���� �������
�� ��� /�)��
�� '�����������
$�������� (��������� */'$(0 �� �����
� ��� ��� '$(� 1��� /'$(�� �������� �� �� ��� ��
�� /'$(�� ����������� ��
���� ��� $9��/'$(���
� �� �� ��������
��������� �� ������ ���������� �� #&' *��������
 ��������
�����0
�������� 1���� �� �� $9��/'$(�� �' *������
�����0 ������ ��� ���
� $����:� '-;(��� ('��
������ �� ���
���
��
�� /'$(�

��)���������	 ��� ��
�� /'$(�� ��������� �������� �� '-
���� ���
����� �� ������� �� ��������� ���� '6

���� *���� �������� ���� '������ '��0 ����� �� ������ ��� ��
�� /'$(�� �������� ������

ICC-Bus

CPU1
CPU1

Local
APIC

CPU2
CPU2

Local
APIC

I/O-APICI/O-APIC External interrupts

Local
interrupts

���� �� �
�� /'$(��� $9� /'$(�� '6�'(�

<����� 2 ����� ��� ��
����
���� ���� �� �5+6�
��������� '(�� $� ����� ���
��� �� � ��������
����� �����	 �����
��� $9� /'$(�� ����������� ��)���������	 �� ���
��� �� � ������
����� ������ ��� ��
�� /'$(������ ���� ��
����� �� ��� ('��

/� ���
����� �� =2> ��� ��
�� /'$(����
������� � 5,���� ����� �

������� �� ��� ('�� 1�� �����
�� ��

�������� �� � ���
��� ����� ��������� 1�� ���� ����
�� �� ����)�� ���� ��� ���
�����:� ���
��
! ���
��
���������� �� ��)����� $� �������� �������� ��� �������
 ������ <�� ��� ������� �� ������� �������"���� �����

���
����� ��� �������� �� �����������	 ��
���� �� ���� ��� ��� ����
������ ���!���� �� ��� ������� ��������
���� �����	 ���� �� �������)���� ��
����� ���� ��� �������� ���
������ ���� �� 4��� ���� ��� ����� ��� ��
��������� �� ��������� ���� ��� ����� ���
���)���� 4����

%���� �� ���� /'$(����� � !����� ������ ��� ����������� ���
� ������� ��� ����
 ���
��������� �� ��� /'$(
����� �� ����� �������� $� �� �����4�� �� � ���!�� ���� �� �)����	 ������� �

������ �� ��� ���������� ����� 1���
������ �� ����� ��� ������ �� ���� �� �������� ������� � ����
� ������� ���
������� ����� $� � ����� �������	 �
����������� ���
���� �� ��)�!��	 ��!� �� ����� �� ����
��� ���� ��� ������ ������ ������

1�� ������� ���������� ���� ���� /'$(������ ����� �� �� ��� ��������� �� ��
����
����� /� ��� ��� ����� ��
������ �+6������ '(� �� �� ����� 277 &34	 ��� ������� ���������� ������ �� 7	2 ��
����
���� *29277 &340	
��� ��� �� ���
��
������� ���� ������ ��� ����
���� �� ��� ��������� ���)�
� ������� *��)���
������ �����������
��
�0 ��� �
���)���� �

���
� �� ����� 2 ��
����
���� (����"������ ���� �� � 2	777 �� 27	777 ����� ������ ���
�����
���� ��� ������� '(������

� �����������
��

1�� /'$(�����
������� �� ��� ���
��� ��� � ������ ��� ��� �������� ���� !����� ����� 1�� ������
�� ��
������ ��� �������� ������
���� ������ ������� ��� ������� ��� ������������)� ���!�	 ���� ������	 ���������
��� �������� ������� ��� ��?�
��)� ������ ��� ��)�������� ��� ���� �� ��� �� ��
� ���
��������� �� ��������
���� ��� ������ ��� ��� ���� ��� !����� ������ �� !��� ���������
� ��� �)�����)��� �����

������������� ���
���� ��� !����� �� ����� ��
������� ��� ���
� �� ������ �� �
��)��� ��� ��
�� /'$(�� �������

����� ������� ��� ��� ��
��� ���
� ���������� ��� ��
������ �������
�� ���� ��� !������ ������� ����� �����
�
������ �� �� ��� �������� �� �������� �� ��������� ������� ��� ��� /'$(����� ���������	 ��
���� ��� �������
������� ��� ���� ����	 �
��		��� �� ����������� 1��� �� ��� ������ ��� ��� /'$(�����
����� �� ���� �� #&'
�������	 ��
���� ���� ��� ���
��������� �� ������ ��� ���
�����4����� ������� ��� �������� ('���

1�� /'$(����� ������
������� �� ������� ���
����� ��� �������
�� ��� ��� ����� �� ��� /'$(������ 1��
�������
� ������� ��� ����� �� ��� �������� !����� ����� ��� ��� /'$(����� ��� !��� �� � ��������

@��������� ����� �������� ��� ������ �� � ������ ���!�� ����	 ������� �� ��� ������� �� ��� �������� ����� �� ���
 ���� !������ 1�� ���� �������� ��� ����
����� ��!� ����8

������ ����	��
��	����

������ ����	��
��	���� ������ ������

�������� ���� ���� ��������

�������� ���� �����

���� �������������������� ���� ����� �������� �����

��

�
��� ��� �	�
 ��� ���� �� ���! ��� ���� ����	 �������������
� 1��)������� ����	�� ����� ���)���� �� ��� ����������
��������������� *1#(0 �� ���
� ��� ����� ���
����
����� ��
����� ��� ���
����� *1�� 1#(�� � ���
����� �������� ���
� �� ��
�������� �� ��� �� ��
� ���
�����

�
��� $�
�� ��
������� �� � ���
����
��
! ���� ���
����� ����� ���
������0 1�� ��
������
��)������ ����
���
�
�� �

���
� �� ���� ��������
���� �� ��� /'$(����� ������� 1� �����)� ���������
�	 ��� ���!��
���� �� ������� �

������ �� ���
����� *����	��0 �����

� ���� �� ������ � ������� ���
�
�� ����� �� ���)��� ���� �� ��� ���������� ����� ������� ���
����� 1��� ��
��������� ������ �� �������� ������
�� �� � ������� ���
���� ���
����� ��� ���� �� !��� ���)��� �����

� ��
����
 �� ��� ������� �� ��� ����� ���
���� ���
� ����� ��
����� ���� ��� ����� �� ���� /���� ��� ����	��
������ �� ���� ��� ���� ���
��� ��
����
 ��
����� ���� ��� ���������� ��������� ���� *��� ���)�0�

���� ��� ��
�� /'$(������ �� ���������	 ��� ���
���� �� ���� �	� ��
�����	 ���
�	 ����� � ��� ������������)�
���!�	 ������
���� 	�
 ���� ����	� 1��� ���
����
������� ��� �
���� ������ �� ���� �� ��� ������� ����	���)����	
��
���� ���� �������
� ���� �� ���� ��� �����
����
���� �� ��� ��������� ������ �� �����)� �

���
�� /���� ����	
��� ������� ����� �� ����)�� ���� ��� ���� ��� ��� ������� ���
���� �� ��)�!��� ���� ����� ?�� �� ����	 ��� ��
��
/'$(���� �� ���������� ��� ��� ���� ��� ����� �� ��� �����

1�� /'$(����� ������ ������� ��� ��������� ���
����� *���
� ��� "���� ������� �� ���� �� ��� �������� �����	
���
����� ��� ������� �� =,>0 �� �������
� ��� ��� �����8

� �
�� ���� ����	���	��� ���� ����	 ���� �����	� ��������4�� ��� ��)�� ����
���� �� ���� ���� ����	 �����
� ��� ���� ����	���	��� ���� ����	 ���� �����	� ��������� ��� ��)�� ����
���� �� ���� ���� ����	 ���� ��� �������
�� ���� ��� ������ ���!�� ���� �� ���������� ������	 ���
� ����� ����� ���
������ 1�� ����� ������� ���
����
����	����
����
 ���� ��
����� ���� ��� ����	������	�� ���� �� ���
����

� ��� ���� ����	���	��� ���� ����	 ���� �����	� ����)�� � ��)�� ���� ����	 ���������
���� ���� ��� ���� �� ����������
*��� �������0 �������

� ��� ���� ����	���	��� ���� ����	 ���� �����	� �
���
�� ��
� ��
� ����	��� ������� ��� ���������� ���� *����	��0
�� ��� ��)�� ���������� ����� ����
���� ���� ����	 ����� '������� ��� �������� ������ ��� ���������� ����� ����
��� �� �� ��������

� ��
�� ��� �
����
��� ��� �
�� ���	
�
�� ���Æ	 ����
��

3��� ���
����� ������
�� �� ���� ��� A��� ��� �)�� ������ ��A � ��� �� �����
������� /� �� ������� �����
������� ��� ������������ �� ����� ���� ��� ������! ���Æ
 �������� 1��Æ
 ������� ��� �� ��������� ��������
���
! ��� ��� ������� �� "������ �� ���)�
� *B�#0 �� ��
!�� ������!�	 ��
���� ���� ����
� ��
!�� ������ ��
�������� ��
!��� ���
� ����)� ��� ���� ��� �����
�������� ���������� $� �� ��)���� ���� ���Æ
 ������� ���� ��
�� ���� �� �������� ������� ���� ��
!��� �� ���
�����
��
������ ������ �� ���� �� ������� �� � ���������� ����
1�� �

���
� �� ����� ����� �
����� ��
��
��� �� ��� ���������
� �� ���Æ
 ��������

1� ���� ��� ����
� �� ����� ���
����� �� ��� ������� ��������� ��)��	 ������
� ��� ���� ����� ��� ���������
����� ������ �� � �������� C77 &34 '(���� � 277 &��� D�������
����
�����

2� ��� ���
��	� �������	� $�� ������� ���"���
� �� ���� ��
������ �� ��� ������� �� 277 34 ���
� ������ ���
�

���
� �� 27 ���

,� � ������� �������	� %� ������� ���������� ���� -777 34 ��� ���������� �� �����)�� �� 7	, �� ��� ��� ������
���!���� ��
������ �������
���� ��
���� �� ��� ������ �� ����
������ �����������

5� 1�� ����� ��)������ ���������	�

APIC-timer (∅ 1,9 µs)

Modified PC-timer (∅ 84 µs)

Standard-PC-timer (∅ 4750 µs)

���� �� &��� ��)������ �� ��� �
���� �� ��� ������� ������������ ���� �� ���� ��
!��� ��� ��� �������� �������

<����� , ����� ��� ���� ��)������ �� ��� ������� ���� � ��
!�� ������ �� ����������� �� ��� �
����)���� ����
�� �� ����� <����� 5 �������� ���������� �� ��� ������� ����� ��� ���������� ������� ��
!���� $� �� ��)���� ��� ���
����� ���������� ���
�� ��� ��)�������

0

2

4

6

0 2 4 6 8 10

0

4

8

12

16

0 50 100 150 200 250
0

10

20

30

0 1 2 3P
er

ce
nt

ag
e

of
 p

ac
ke

ts
(%

) Standard-PC-timer Modified PC-timer
(with increased system load)

APIC-timer

Milliseconds (ms) Microseconds (µs) Microseconds (µs)

���� �� E�)������ �� ��� �
���� ������������ ���� �� ��� ������� ������� ���� ��� ��� �������� �������

1��� ����� ����� ����
�� ��� ���������� �� ��� ������ ������! ���Æ
 �� �� �� ����� �� ����� ;� $� ���� ����������
�
������������ ��
!�� ������ �� 2,., ���� �E'���
!��� ������ �� ������ �� � ��������� �� 2 &���� 1���
����� ������ �� ��� ���� ��
!�� ����������� �)��� 27	5 �������
����� 1�� ����� ����� ��� �
���� �������
!��
���
��� ����� ��� ������� ���
����

���� ��� �������� '(������ �� ����	 ��� ������ ��� ���� ��� ����������� �� ���� � ��
!�� ������ �� 27 �� ,7 ���
1���� �� �� ��� �� �������� � ��
!�� �� ������� ����� ����� �����)���� 1�� ������ ��� �������� �� ���� ��
!���
�����	 �� �� ��������� ���� �� ��� ��
!��� ���� � ���
��� �� 27 ��� 1��
�������� ���� �� ������� �� �������� �
��� ��
!��� ��� ��� ����� ����� �����)��� *,7 ��0�

1�� ������� '(������
�� ������ ���� ?�� � ��� ������ ��
���� �� ��� ���� ����������� �� 7	, ��� $�	 ���	 ��
�������
������� ��� ��?�
��� ����� �����)��� *���
� �� ������)������ �� ��� �����0�

Packet sequence number

0

5

10

15

20

0 20 40 60 0 10 20 31 40 50 60 0 10 20 30 40 50 60

In
te

rp
ac

ke
t t

im
e

(m
s)

Standard-PC-timer Modified PC-timer
(with increased system load)

APIC-timer

Scheduled valueScheduled valueErrorError

���� 	� $������
!�� ����� �� � ������ 2 &��� ���� ������
��������� �� 2,., ���� ��
!��� *������� ���
���
27	5 ��0�

%� ����� ��� /'$(������ �� ��
���� �������� �� �����
� �)��� ������ ������ ���� ������� $��)��� ����� �����
�� ������������� , �� �� ��)������ �� ��� ������

D)�� �� ���� ������)��� ��� ��������� ��� �������� �����
�� ���� �����
� � ?�������� ������ ������� 1�� ���
����� ������ ������� ������ ��� ��� ��������� ��� ������� � ����
���������� ����� <����� - ����� ��� �������
�� ��� ���� ������� � 66C ���� ��
!�� ������ �� � ��������� �� -7 &���	 ���
� �"���� ������� � ��
!�� �)���
27C ��
����
�����

0

50

100

150

200

250

0 10 20 30 40 50 60 0 10 20 30 40 50 60

In
te

rp
ac

ke
t t

im
e

(µ
s)

Modified PC-timer
(with increased system load) APIC-timer

Scheduled valueScheduled value

Packet sequence number

����
� $������
!�� ����� �� � ������ -7 &��� ���� ������
��������� �� 66C ���� ��
!��� *������� ���
���
27C ��0�

$� ���� ���������� �)�� ��� ������� '(������ �� ��������� �)�� ��� ������� ����������� 1�� �
������� ��
!��
���
���
����� �� ���������� ��� ��� ������ ��� �� ���� ��
!��� ������ ����������� �� ������� �� � �����
7	, �� ����� �����)���

/���� ��� /'$(������ ����� �� ����� �� ��
������� �

���
� ��� �����
�� � ������ ��
!�� ������� $� ���������
������ ����� ��� /'$(������ ��� �)��
������ �� ������������ ��
!��� ���� � ���
��� �� ���� 2C�� ������ ��� ����
����� ���
��� ����� ������ *��
!�� ���������� ��� ������������0� 1��� �"���� � ��
!�� ���"���
� �� -+	+77 ��
!���
��� ��
��� ���
� ����� A�)�� ���� ����� 277 ���� ��
!���A ������ �� � ��������� �� ���� ���� ;C &����

� ���	���
��

/ ��� ��� ����������� ����� ������ ��� ��� ���� !����� ��� ���� �����������	 ���
� ����� ��� �����������
�� ���
��� ���
����� �� ���
����� ������ ������� �� ����� %� ��!��� ��� �� ��� ��
�� /'$(:� ���
���������
�� �

���
� �� ����� 2 ��
����
��� �� �
���)�� ��� ��� ���
����� ���� �� ���������� �
����� *�������� ����
�������� �� ������
����� ������� �� ��� ������0�

1�� �������� ������� �� ��
� �� �����)�� ����� ���
����� ��)� ���� ����� ��� ���Æ
 ������� �� � ��������
������� �����
������

�������	��

�� �����
����������� ��	��
�� �����!��"� �
��
�� ������ �#$� �%%��

�����������	
����
���	��
�����
�������
��

������	�����������������
�� &����
� �� '�(���
�)��
��
� *��(��� ����� ����	� �
���
�� +"'�����#,���
-� � � ������)��� �%%�� +����� �������

� �����������
��
		���
������	
��	
�����
�������������

 �

Paper Submitted by:
Muthukumar Shunmugiah

University:
P.S.G. College of Technology

Country:
India

 Linux Challenge - 2001
Student Winners

 April 2002
Page 66 of 134

Remote System Administration (RSA)
Category of Project: System Administration Tool

I have done a project named Remote System Adminitration , and i have written an essay as you
mentioned in your mail. The project source code is send as a attachment in this mail. Two RPM
files Server program written in java, client program written in C & C++ with a README file
showing how to install the software. In case you accept this as a valuable project, I will try to
enhance my project so that it accomplishes all the system administration features.

Objective

The General Objective of the project is to provide a tool for the System Administrators to
administer the remote(client) systems from being in the server. The following are the
main objective of the project Remote System Administration:

! Remote Process Monitoring - Aims to monitor the processes in the client system and
provides way to send signals to the processes.

! Remote User management - Aims to provide user management functions such as
adding a user, removing a user and modification of user details including the change
in password.

! Remote RPM Installation - This is one of the vital goal ofRSA which aims to
provide simultaneous installation of RPM packages in the selected client systems.

 Description

Necessities for Remote System Administrator:

I myself came across practical problem of installing a rpm package in all the systems in
the lab while guiding our system administrator. It's really worthless to waste the golden
times of the system administrator in installation of software (repeatedly doing the same)
in all the systems. This is the reason why I choose this project. The process monitoring
will be useful in the distributed computing environment, networking projects, etc.

The User Management is trivial administrative task. The front end used to develop the
Graphical User Interface is done in java so that the server can be any systems (sun
Solaris etc). The back end was developed in C & C++ (mostly C).

 Linux Challenge - 2001
Student Winners

 April 2002
Page 67 of 134

Methodology

Number of Systems: Two Redhat Linux 7.1 systems were used to do the Project Software
Requirement: GNU c++, Java 1.3 Testing : Final testing was done with Five systems.

There are two major processes in the project:

A. Client Side Process

! Will accept the request from the Server process running in the server and will fulfill
the request of the server by sending messages.

! Should be executed in each and every client that should be controlled by the server.
! It is a daemon process.
! Interacts more with the system therefore written in C & C++.

 B. Server Side Process

! Will provide easily understandable Graphical User Interface to the system
administrator.

! Will send request to the Client process according to the user choices.
! Should be executed as a fore ground process in X environment.
! Developed in Java so that the server can be any Operating System (Solaris etc).

Results Obtained

The project was tested with Five systems and all the three modules namely Remote
Process Monitor, Remote User Manager and Remote RPM installer are working well and
shows expected results. Remote RPM installation is the highlight of the project. Future
enhancements are planned to make the RSA system with a full fledgede system
administration features.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 68 of 134

TO INSTALL THE SOFTWARE FOLLOW THESE INSTRUCTIONS

1. Installation

A. Client Side Installation

rsaclientd daemon must be installed in each client that should be controlled by the server.

The installation procedure is as follows:

 1. Get the source file rsaclientd-1.0-1.tar.gz.rpm

 2. Execute the following commands

rpm -i rsaclientd-1.0-1.tar.gz.rpm

cd /usr/src/redhat/SOURCES

gzip -d rsaclientd-1.0-1.tar.gz

tar -xf rsaclientd-1.0-1.tar

cd rsaclientd-1.0-1

make

 The client daemon will be installed in /usr/sbin

 B. Server Side Installation

The rsaserver must be installed in the server alone. In the server side you might want to
edit the configuration file name /etc/rsa.conf

The following steps are to be done to install the rsaserver.

1. Get the source file rsaserver-1.0-1.tar.gz.rpm.

(Make sure that java is installed in your system and javac_g and java_g are in the
PATH variable of the Shell.)

 Linux Challenge - 2001
Student Winners

 April 2002
Page 69 of 134

2. Execute the following commands

rpm -i rsaserver-1.0-1.tar.gz.rpm

gzip -d rsaserver-1.0-1.tar.gz

tar -xf rsaserver-1.0-1.tar

cd rsaserver-1.0-1/src

make

c. /etc/rsa.conf/etc/rsa.conf will contain the IP address of all the clients connected in
the rsa network.

 Each new entries must be in a new line. It may also include servers own address.

sample entries are

 192.168.3.1
 192.168.3.2
 192.168.3.22

2. How to start rsaclientd in client side?

There are two ways to start the daemon:

1. Login as root and type the following in the shell

/usr/sbin/rsaclientd

2. To start the rsaclientd daemon, enter the following line in /etc/rc.local

 /usr/sbin/rsaclientd

and restart the system.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 70 of 134

3. How to start rsaserver in server side?

1. Login as root in Kde or gnome or X . open a terminal and type

 (make sure that java is installed and path to javac_g and java_g is set
in PATH variable)

 rsaserver

 A window will appear with all the details of the system in the network of rsa. The clients
IP will be read from the file /etc/rsa.conf.

Refer to help for rest

 - rsaclientd-1.0-1.src.rpm

 - rsaserver-1.0-1.src.rpm

 Linux Challenge - 2001
Student Winners

 April 2002
Page 71 of 134

Paper Submitted by:
Shah Sachin

University:
GLS Institute of Computer Technology

Country:
India

 Linux Challenge - 2001
Student Winners

 April 2002
Page 72 of 134

NextGen File Management
Category of Project: Device Drivers

Lacking in Current File System:

! Restriction on file size.

Administrator cannot have any restriction on file in a directory. Presently he / she car
restrict on only directory access or file access. User may create large file or put simple
shell to fill whole disk storage. Example:

Create two files: A.TXT contains only 'A'
A contains

cat A.TXT >> B.TXT
cat B.TXT >> A.TXT
./A

So, Administrator cannot restrict on file size.

! They are in no extra permission given to files or directory.

In present system, any user can create a file on other directory's or subdirectories. To
restrict this administrator will set rights of user or group. However, these things are at
one server but each terminal administrator will set rights on each directory. Therefore,
this is cumbersome job to administrator.

Suggested Implementation:

! Administrator give rights / permission to each user accordingly their status like no of
file created, number of sub-directory and maximum size of each file. Thus total entry
i-nodes will be fixed and accessing time of each file can reduce.

! Each user may set rights such as execution of any file on particular day or time or file
can automatically encrypted with some password protected. Therefore, developer can
execute certain file or schedule. In present system, AT command is present but It do
not maintain execution of successful or unsuccessful entry. Suppose at that time
system was down so, at that time AT command will not work. My suggested
permission can take history of each file execution. So, such details are provided to the
user. This feature is very much useful in Embedded system. User or Developer can
schedule that some application or some data transfer will be done on that time. In
addition, successful or unsuccessful operation may be checked.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 73 of 134

! Administrator will able to mount local hard drives from server and gives rights
accordingly. So, from the server, he / she will able to admin whole network drives.
User cannot know which computer in the network is containing his file, directory, or
data. At present, we combine all computer (around 100 computer having 20 GB
HDD) storage capacity then 2,000 GB data can be stored in the network but, As per
my calculation around 80 - 100 GB is sufficient for any 100 computer network. At
present, other space was used as a second copy of same file or in MP3 songs but this
space is utilized efficiently.

! In feature, some embedded system, example in steel plant temperature of plant should
be recorded to system after every 10 seconds. Then present system required fixed
computer with the plan when user wants then plant computer will give data to user.
But in suggested system, Plant will automatically writes data on server's (networks)
file system. So, Any authenticated user can see data online and made decision. This is
only one example but in feature, much more embedded system.

Problems in the Suggested System:

! Virus: Virus can easily implemented because user may schedule it. But this problem
can be solve using permission or authentication from administrator.

! Administrator Jab becomes congested but user may get much benefit and user might
restrict in creating extra file and directory.

! Network is the bottleneck of whole file system. But today�s networks are much more
reliable so it might be not create any problem in features.

! Administrator has new responsibility that whenever any machine was down but user
may want data then Administrator has define rules in this manner or stored data in
such a manner that when ever user wants data then it was available.

Benefit of Presented File System:

! Feature Expect: Embedded devices are most complex in scheduling. From this, we
can run application for the embedded system very easily by configuring a file.

! Costing: Much more effect use of HDD can be achieved.

! Application Cost: We have to purchase only one license for one software. So over all
costing of software / application will reduce.

! Managerial aspect: Administrator can manage whole network from one terminal. He
may access any file from any ware.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 74 of 134

! Parallel processing on multiple computers can be easily configured. Therefore,
Processing speed will automatically increased. We can use old / not workable
computers for new operating system like Windows Xp.

Requirements for Developing Such File System:

! Some network protocol must be implemented. Those protocols can decide where data
was present and accessing methods of that data. Betting indexing is required for
better searching data. Protocol, itself decide that which terminals are down and which
are coming up in recent.

! Some Important data must be duplicated in two different machines. (For zero fault
tolerance.)

! Develop such a hardware devices that they can read system or application or even
data from other machine without any error.

! Kernel should read and store all rights on the each files in the system. Kernel examine
rights when accessing by the user or some policies like 10% extra growth of file
should be allow with some warning message or user program wait until administrator
of system allocate more space or remove restriction etc. However, in the present
scenario high speed processor and higher memory are available so, Kernel
implementation will not restrict with those things.

Note : This file system is not implemented yet.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 75 of 134

Paper Submitted by:
Sreeram Jaswanth (Jesse)

University:
International Institute of
Information Technology

Country:
India

 Linux Challenge - 2001
Student Winners

 April 2002
Page 76 of 134

Category of the Project: Software for Workstation Cluster Management

Clusters are fast gaining importance and acceptance as an alternative solution to bigger
and expensive machines. Usage of clusters for addressing computing needs improves
existing resource utilization since it uses only idle CPU-cycles of the nodes. Apart from
utilizing unused node resources, clusters also enable a group of nodes to share rare
resources, such as specific architectures, special computers dedicated to jobs like vector
processing, etc.

A simple monitoring tool devised by the author and used in the campus computer lab
showed that on an average, at any given point of time, around 82% of the nodes are very
lightly loaded (i.e. are grossly underutilized), 12% are moderately loaded and 5-6% are
highly loaded. This goes to show the degree of underutilization in existing computing
resources.

The advantages that cluster computing has, over traditional high performance
supercomputers etc. is evident from the fact that companies and institutions are switching
to cluster computing for fulfilling their large scale computing needs. There are many
cluster management software packages available in the commercial domain today. The
�ClusterPro � Cluster manager for workstation clusters� (here after referred to as
�CLPro�) is a package built by the author to efficiently build and operate clusters of
in-use workstations.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 77 of 134

ClusterPro
A cluster management package with dynamic load balancing.

 The basic structure of typical cluster is as shown below:

Each workstation has a certain amount of idleness associated with, which is the weighted
fraction of resources unused. It is this idleness that the CLPro harnesses.

The master of the cluster maintains a state table which contains information about the
slaves that are a part of the cluster. The table typically contains the idleness level (which
is a combination of parameters like processor idleness, memory usage, swap usage etc.).
When the CLPro service is started on a workstation, the workstation (now a slave in the
cluster), reports its idleness parameters to the master balancing server and this
information is recorded in the state tables.

When a slave has a major program to execute, it submits the job to the master. Then the
job is checked for suitability and is enqueued on a central job queue. A typical job
request consists of (a) a job descriptor, (b) owner descriptor, (c) list of special resources
required (if any), (d) argument list. The queues are reconfigurable to support job
priorities etc. Once the job has been enqueued, the owner is given a job_log tag, by
which he can monitor current status of the job etc. The package supports MPI (Message
Passing Interface) libraries hence making it easier to port existing parallel applications
onto the CLPro.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 78 of 134

Dynamic Load Balancing:

The CLPro has tools for dynamic load balancing among the slaves. This serves to
optimize resource utilization by transferring load from overloaded to under loaded
slaves. All the resources that are marked by the master_balancer as available for use
form a resource pool and jobs are distributed evenly across the pool. A daemon
running on the CLPro_master is collecting slave state information and updating state
tables in the master server. The tasks are then distributed over the resource pool,
according to the �idleness� (defined later in the report) of each slave. Such a
distribution is carried out only if the special requirements mentioned in the list of
special resources requested in the job submission script. Special resources may
include specific architectures, platforms, specific versions of libraries etc.

The process of executing tasks remotely, migrating them and gathering results etc,
involves a considerable communication overhead, which may go to unacceptable
levels depending upon network load density, peer response time etc. To prevent the
slave from making an un-optimal job request, (i.e. submitting a job, which could be
executed locally and thus cheaply than by enqueuing it on the master queue) the
CLPro uses a set of policies, which govern the decisions regarding the fitness of a job
submitted for remote execution. One criterion is the network_load at that instant. The
load balancing algorithm uses a pair of threshold network_load values to determine
fitness of a job. Beyond the soft_net_load value, the algorithm discourages the
submission of remote jobs, since there would be a possibility of loss of critical data
during submission or migration, owing to the high network_load.

Another criterion is the slave state (the word �state� is used to mean a combination of
many parameters vital of which are processor load, memory load, swap memory
usage etc.). Here, the load balancing algorithms use the classic ALONSO & COVA
(1988) hypotheses for thresholds. Here too, like in the network_load criterion, two
load thresholds are used viz. the soft_load_limit and the hard_load_limit. Below the
soft_load_limit all local processes are run locally and all remote jobs requests are
accepted. Between the soft_load_limit and the hard _load_limit, all local jobs are run
locally and all remote job requests are rejected. Beyond the hard_load_limit, all local
jobs are submitted to the master queue and all remote job requests are rejected.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 79 of 134

Process Checkpointing and Migration:

The CLPro also features a process checkpointing and migration mechanism for better
balancing of loads on slaves. The state of every process not belonging to the local
machine is periodically recorded in the process state tables (which are exclusively used
for checkpointing purposes only) on the local machine. In the event of a node failure or
abnormal overloading of a node, the process can be paused, migrated to another node
(this, according to the load balancing policies) and restarted again from the last
checkpoint.

However, it has been found out that pre-emptive process migration is, in most cases
extraordinarily expensive, without any (in most cases) extraordinary benefits. Process
migration which is carried out to as a part of load balancing is very inefficient in its
present form. Instantaneous slave loads are too volatile for process migration techniques
to be based on them. After a process has been migrated from one slave onto another due
to overloading of the first one, the second one might become momentarily overloaded,
thus migrating the process again. This may continue for an abnormally long time if many
slaves are having widely fluctuating load. Thus migration may not be the most efficient
solution here (especially since it involves saving and transmitting large state table,
checkpoint files and stacks). Better migration mechanisms are being studied.

Multi-Clusters:

The CLPro can be configured to support multi-clusters too. Multi clusters are used when
the number of nodes is very big, and in cases where the nodes are spread over
geographically distant locations. In such cases, the nodes are divided into multiple
clusters each with a manageable number of nodes. Each cluster in turn has a cluster
controller, which acts as an intermediary between a slave and the master of the
multicluster. Slave state information is now recorded and maintained both with the
cluster controller and master of the multi cluster. The cluster controllers receive the job
requests first and decide if the job can be executed cheaply, within the cluster itself or if
it has to be executed remotely (i.e. using the resources of the other clusters too.).

 Linux Challenge - 2001
Student Winners

 April 2002
Page 80 of 134

Other features of the CLPro include a normally-redundant backup master server on
standby for deployment in case the master_balancing server fails. This backup server
monitors the state of the balancing server continuously and copies the slave state tables
and job queues onto itself periodically. When the backup detects that the master has
failed (failure in responding to a test-stream of packets, and failure in acknowledging an
express request), the backup_master takes over and broadcasts a message requesting the
slaves to report latest load status. It then updates its slave state tables (that it has been
copying from the previous master) and assumes the role of the master_server. However,
it has been observed in experimental runs that the time taken in -- detecting a
master_server failure, collecting latest salve state information, and resuming the job
queue � is very large as a result of which, the slave information collected may become
stale, and jobs may become redundant. The author is studying better mechanisms to
restore normal state of a cluster in case of a master_server failure.

The CLPro was developed as a part of a bigger GRID-computing project for harnessing
idle CPU cycles of the PCs in the lab. Before the development of the CLPro, many other
cluster management softwares were studied for suitability of use in the project. One
major hurdle was the unavailability of open source CMS packages. Proprietary CMS
packages like the commercial ones available today, have the biggest disadvantage that
they are difficult to configure, reconfigure, and customize. Cluster management needs
vary widely from cluster to cluster and even from configuration to configuration. And
the unavailability of source code for the packages makes it even more difficult to
configure the package to fit to the cluster. The CLPro addresses this issue by providing
sysadmins complete flexibility in modifying and fine-tuning the package to suit their
clustering needs.

When the author was studying the different CMS packages available today (both
commercial as well as research), like CONDOR, NQS (developed by NASA and then
taken over by university of Sheffield U.K), CODINE etc., he was surprised to find out
that most of the CMS packages didn�t support LINUX. This is incredible, considering the
fact that LINUX has been emerging as the platform of choice for clustering. So much
that the Google web search engine is believed to use a high performance linux cluster for
querying on its multi terabyte web-index. The unavailability of CMS packages
supporting LINUX as a platform has been one of the motivations for the author, while
building CLPro.

MPI (Message Passing Interface) has evolved over time to become the industry standard
distributed application programming environment. It has grown, to replace many other
environments like PVM, CHIMP etc. But it is surprising that the popular CMS packages
today don�t support MPI. The product data sheets or information pages of these CMS
packages like DQS, CODINE etc, do not even mention any role for the MPI. On the
CLPro, programming environments like MPI are supported and there are plans to include
support for others like PVM (minimum 3.3.X).

 Linux Challenge - 2001
Student Winners

 April 2002
Page 81 of 134

Perhaps the most important feature of the CLPro is its set of load balancing algorithms.
Many CMS packages in use today like the GNQS (Generic Network Queue System) etc.,
feature only static load balancing schemes. This severely restricts the degree of balance
that can be achieved, as well as the degree of usage of idle cycles. The CLPro uses
dynamic load balancing schemes by means of which it is able to respond to changing
slave states. To optimize the distribution of processes, the CLPro uses parameters called
�weighted load averages� for every slave. The load status of every slave is reported to
periodically to the master server, which in turn updates its state tables. The master
averages this information over 5 and 10 minutes, applies an appropriate weight constant
and records it as state history. These weighted loads are then used by the master to
calculate the final idleness of a slave. A simple polynomial of the form -

 I = gá+ (1-á)g� + T.

Here, I is the final idleness of a slave as to be recorded in the state table of the master,
g is the idleness as reported by a slave, g� is the weighted load average , á is the auxiliary
weight factor, and T is a constant which is unique for every slave.

Based on this final idleness value, the state table is sorted in descending order of idleness.
And all further allocations of jobs are done basing on the idleness values in this table.

In case there is an abnormal increase in load on a slave, the slave reports this to the
master, which responds by dropping that slave�s position down in the sorted list of idle
slaves, and all remote jobs on that slave are stopped. If the state of abnormally high load
persists, all remote jobs on that slave are checkpointed and are migrated to other slaves
(according to the idleness list).

This form of dynamic load balancing has performed much better than static load
balancing (used in GNQS etc.,) and even many other dynamic balancing techniques like
the ones used in PBS (Portable Batch System), etc.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 82 of 134

The Tests and the Results:

The CLPro was tested on a cluster with number of nodes ranging from 2 to 16. The
nodes were ordinary PC�s in the computer labs.

 Nodes:
! CPU - Pentium ø 1GHz.
! Main Memory: 128MB.
! Disk � 20 GB.

Each node was using:
! RedHat Linux 7.1 Kernel 2.2.16 with MPICH ver1.2.2.2, glibc ver 2.1.92 and glib

ver-1.2.8.

 Network:
! 10/100 Mbps Local Area Network.
! Network Interface Card: Realtek RTL8139(A)-based PCI Fast Ethernet Adapter.
! High speed hub and switches.

Initial test runs indicated a high communication overhead. And often the results were
widely varying owing to the fluctuating LAN traffic and users� local jobs. Improvements
were made and the cluster was able to achieve around 3740 MIPS in a test run. This was
reasonably good, given the fact that the number of nodes available was very low (ten in
number). But still, it has been observed that the network overheads involved were very
high. However, the load balancing algorithms showed impressive results. But as in any
new package, there remain improvements to be made.

Improvements Planned:

! Incorporate changes to keep the communication overheads and peer- response
latencies low.

! Make it more robust. In some tests, slave failures or abnormal local loads resulted in
remote jobs dying away.

! Incorporate tools for making the cluster more tightly coupled. In the present version,
the CLPro treats slaves as independent identities, ignorant of each other�s existence.
Improvements in this regard -Tools to incorporate include some kind of shared file
services, a directory naming structure for files and similar resources shared by the
slaves.

! Porting the CLPro to Java RMI. Also, to provide support for OCCAM or CSP.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 83 of 134

! Making it more reliable � the master load balancing server is a �single point of
failure�. Deploying the backup effectively and restoring normality in the least
possible time is critical to ensure high availability of a master server.

! Improving the process migration mechanism.

Conclusions:

The CLPro has made a reasonably good start. And it has a long way to go (in terms of
improvements) and the author is already working on them. But nevertheless, the author
is confident that it will grow and mature into a robust, efficient and comprehensive
clustering solution. The idea was born out of frustration when the author, who was in a
research group studying the applications of bioinformatics, was studying DNA sequence
alignment algorithms, but could not get access to the enormous processing power
required to test them. The CLPro, the author feels is an appropriate answer. And the
enormous promise being shown by CLPro is acting as a motivator for the author to make
it better and even better.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 84 of 134

Paper Submitted by:
Francesco Regazzoni

University:
Politecnico di Milano

Country:
Italy

 Linux Challenge - 2001
Student Winners

 April 2002
Page 85 of 134

On-Line Help System to Complement the
HowTo's and Man Pages

Part 1: Description of Project

Our project consists in an help files navigator, we called it help_navigatOV.

We tried to make an easy and fast way to provide most useful information for a Linux
user or admistrator. The main idea is that you don't have to look for different sources of
Information (man pages, HowTo's and so on) but it's all included in the same place.

You don't need to know anything about commands you're searching help for, you only
have to know what you want to do. Help pages are about most used commands and main
configuration files.Of course, only main features are provided for every item. It would be
useless to provide complete information: it would be just a copy of the man pages.

Part 2: Methodology We Used

Developing the project, we tried to maintain a certain consistency with the existing tools.
We decided to provide our help_navigatOV with a user-friendly text interface like most
utilities (i.e. Linuxconf). So we've implemented our software's interface using an utility
called dialog (ver 0.9), that we found at www.redhat.com.

The menu is organized in two parts: the left one contains a list of all commands or file
there's some information about. The right one shows a little description about the chosen
item. The user can move up or down using arrow keys and can choose a voice pressing
Enter. Choosing an item cause all the information about it to be displayed. After reading
you can come back to the main menu just pressing Enter, then you can continue selecting
and reading another mini-help. You can quit just selecting Cancel from the main screen.
For every item considered there's a file in a subdirectory. This file is named like the item
it refers and contains two kinds of information: the first one in included between <H1>
</H1> tag and it's the main title to be displayed at the top of the window when you select
an Item; the second one includes all the information available to be displayed, that's a
short brief on the man page about it. Every file is provided with a particular formattation
in order to be correctly displayed it in the navigator. You can recognize the file
containing information about configuration files because they're in the form file_<name>.
All the files are stored in a subdirectory and they've got .hlp extension.

The navigator looks for this subdirectory and it lists all the valid files found in the left
side of the screen. After that you can view any of the mini help listed as described above.
Now we describe the way we implemented our project. There are two Python scripts: the

 Linux Challenge - 2001
Student Winners

 April 2002
Page 86 of 134

first one generates and manages the windows on the screen, the second one creates the
menu and manages the user choices.

Of course, to make the navigator running you need to have Python interpreter installed.
Moreover, you also need the dialog utility mentioned above (ver 0.9 or later) for the user
interface. To develop opur project we had to look for specific information about Python
Language. We found what we were looking for in a newsgroup (www.deja.com) and on
The official Python web site: www.python.org. To learn more about the dialog utility
we've consulted the man pages about it. As explained above, to compose the mini help
files, we based ourselves on the man pages and HowTo or on our personal experience in
using Linux Systems. We decided to provide our system with a network architecture: on
server side there are help files and a demon that listen on a port. Clients need only a little
script that takes from server the list of help files to create menu and then asks help file
needed and shows it.

Part 3: Results

We reached our objectives in developing a fast, easy to use help system.
Moreover, we think our system can be useful both for a beginner and an administrator:
the beginner can retrieve main information without going crazy reading the man pages;
an expert user can quickly retrieve the few options he needs to keep on working.

An interesting aspect of the system we developed is that you can easily add items just
putting a valid help file in the appropriate subdirectory: help_navigatOV will
automatically display it the next time it scans that subdirectory.

This feature is very useful in a network. The administrator, in fact, has only to add a new
help file to allow at once all client to see it.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 87 of 134

Paper Submitted by:
Jongmin Park

University:
University of ULSAN Korea

Country:
Korea

 Linux Challenge - 2001
Student Winners

 April 2002
Page 88 of 134

Design and Implementation of a WWW-based C
Source Code Documentation Tool Using RE Technologies

1. Introduction

Due to the rapid growth and popularity of a WWW, the existing software engineering
technologies are required to adapt to a new environment. That is, software engineering
technologies applied to the existing environments should change so as to conform to a
new paradigm.

By the virtue of WWW, anyone can access to desired tools at anytime, and from
anywhere. WWW-based applications don�t require some special installation procedure
unlike the general applications. And developers can upgrade their software at anytime, so
that they can provide better services for their user.

So the field of software engineering has much to gain from the WWW. Many of the goals
of the field can be achieved in a better way by utilizing the facilities provided bye the
web.

Software maintenance is a very important field of software engineering because the
maintenance of existing software can account for over 60 percent of all effort expended
by a development organization, and the percentage continues to rise as more software is
produced[1]. And program understanding is an essential part of software maintenance.

In this paper, we discuss the design and implementation of a WWW-based
documentation tool(WEBDOC_C) developed by using the reverse engineering and web
programming technologies. Our tool automatically extracts the design information from
C source code files.

2. WEBDOC_C

We developed a WWW-based C documentation tool called WEBDOC_C. The users
connect our web application through web browser and then present the listing of C source
code and header files.

Based on these information out tool uploads those files from user�s computer into our
system. Then analyzer extracts information about call relationships between functions,
and information about definitions and references of global variables. Analyzer stores
these extracted information into database.

Based in the stored information, Generator creates the call relationships between
functions, and the relationships between functions and global variables in the form of

 Linux Challenge - 2001
Student Winners

 April 2002
Page 89 of 134

structure charts. Users can obtain design information about relationships between
functions, global variables by selecting the appropriate function.

2.1 Analyzer

The first work performed by Analyzer is uploading C source code file consisting of
project into our system by using the information about the project provided by a user. For
the efficiency of the whole development work, we used the existing uploading
component in this work. Then, Analyzer performs to analyze these uploaded files. In this
work, we used the existing C analysis utilities such as cflow and cxref. These utilities
generates information about function calls and the definitions and references of global
variables from C source programs as their own formats. That is, C source files uploaded
by users is used as input of these utilities, and we developed simple C programs which
extract the desired information having our own format from the output of these two
utilities and store these information into the database.

Database is consisted of eight tables. Three tables are used for user supports, project
information, and information about uploaded files. Two tables are used for maintaining
the information about functions, and global variables. And the remaining three tables are
used for maintaining the information about call relationship between functions, and the
information about the definitions and references of global variables.

2.2 Generator

Generator performs a synthesis work to generate the structure chart format after obtaining
the information stored in database and then displays it to users through web-browsers. To
show the structure chart on the web browser, we decide to use Java applet and Java
Servlet.

Servlets are consisted of four classes to obtain the information about function call
relations, relationship between functions and global variables, and relationships between
files and functions. Our Java applet is consisted of one class, and displays design
information as structure chart format by cooperating Java servlets. Java Applet maintains
information about relationships as tree structures and uses Hashtable.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 90 of 134

3. Implementation of WEBDOC_C

WEBDOC_C is developed on Red-Hat Linux OS (ver. 6.1), and is based on Apache web
server. We developed out servlets on Jakarta-tomcat, and used Mysql database
management system.

Our system is consisted of twenty four files including five C programs to performs the
work that stores the outputs from cflow and cxref utilities into database as our formats,
four Java servlets and one Java applet which obtain information from the database and
display structure charts on the web browser. The size of our system is about 4,000 LOCs.
Output screen is divided into two frames. The left frame is consisted of work areas where
users select as they want and the right frame is consisted of output areas where the output
result is shown. Top left corner represents function names as list box, and users can select
a function that users want to analyze. Below that box, global variables names are also
shown as list box. If users select a global variable, a group of function using that variable.

4. Conclusions

Our tool automatically extracts the design information from C source code files. We have
attempted to adapt and existing software engineering tool to a new paradigm and have
tried to use and combine the various web programming techniques and the existing
technologies. We expect that a study on combining the existing software engineering
technologies and web technologies is activated on the basis of our study. In the future, we
are planned to study website analysis techniques including web metrics and maintenance
of web applications.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 91 of 134

Paper Submitted by:
Frank Kruchio
(frank.kruchio@paradise.net.nz)

University:
Victoria University of Wellington

Country:
New Zealand

 Linux Challenge - 2001
Student Winners

 April 2002
Page 92 of 134

Linux Server/Workstation Performance
and Stability Optimizations

1. Linux Optimizations

The availability of free source code under Linux applications allows the end
user to optimize software for a specic processor architecture. In this paper I
will describe my objectives, the approach I have taken, the tools and processes
I used and the nal results.

1.1 Introduction

Processor architecture specic optimization of software provides faster program
execution speed, better efficiency, improved user experience, faster response
time and improved usability on a workstation. On the server side it improves throughput
which is more important than response time in a workstation environment. One added
benet in both the server and only faster but it is also more stable due to being compiled
on the processor where the program will eventually be used. There seems to be a small
number of websites available on Linux optimization topics and none of them targets the
beginner.1 Linux newsgroups frequently show end user interest in how software
optimization is done under Linux, so there seemed to be a genuine interest in the topic.

1.2 Description of the Challenge and Objectives

Linux distributions for the x86 architecture are far from being optimized out of the box,
Red Hat is compiled for i386, SuSE i486 and Mandrake is only compiled for i586. My
main objective was to provide a simple tutorial with IBM's Toot-O-Matic XML/Java tool
that people new to Linux can read and by following the tutorial optimize their own
servers/workstations for maximum performance. I wanted to provide a tutorial that is
clear, easy to read and understand; so the readers can reproduce the same steps on their
own computers at work or home. This way the readers could easily enhance Linux
functionality, usability and performance.

1These websites focus mostly on kernel optimization.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 93 of 134

1.3 Research

Since the focus was on providing an easy to use tutorial, this tutorial was written entirely
in XML, using the developerWorks Toot-O-Matic tutorial generator. I had to restrict the
Linux distributions to the Red Hat package manager (RPM) based distributions to make
sure that the process is simple enough for people new to Linux to follow. For this reason
I discarded the idea of using Intel's icc/icpc C/C++ compiler and decided to focus only on
the gcc/g++ compiler coupled with RPM's rebuild functionality.

1.4 Benefit and Results

I have tested the tutorial on someone who has never done any optimizations on their
Linux computer and found that the person was able to follow the instructions very easily.
Some of the questions and feedback I received was used to improve or clarify parts of the
tutorial. The benets are two fold: increased stability is one and the performance
improvements are immediately noticeable. Applications start faster, respond quicker and
the end user experience is much improved. One of the main points that were addressed by
the KDE project is that KDE application performance needs to be improved. By
optimizing the latest KDE 2.2.2 source RPMs and the QT C++ GUI library this problem
is solved. While XFree86 is exible, its memory footprint and performance can be much
improved by optimizing it. After optimizations the memory footprint of XFree86 is
smaller and the X server is more responsive. Linux is ready for the desktop.
Optimizations of the dierent RPM based Linux distributions can be easily done. This
tutorial will hopefully make Linux more attractive in the eyes of those who are using
Linux now or considering it as a possible alternative in the future.2

2IBM Linux Scholar Challenge November 30, 2001

Created with LATEX2"

 Linux Challenge - 2001
Student Winners

 April 2002
Page 94 of 134

Paper Submitted by:
 Bruno Silva

(etbrunos@ua.pt)

University:
Universaidade De Aveiro

Country:
Portugal

 Linux Challenge - 2001
Student Winners

 April 2002
Page 95 of 134

Linux-Based Robot withVision System
November 2001, by

Team: Bruno Silva, Helder Lemos, Luís Magalhães, Nuno Nunes
etbrunos@ua.pt , hjlemos@alunos.det.ua.pt , lmcrmagalhaes@alunos.det.ua.pt ,

nmnunes@alunos.det.ua.pt

1. Introduction

The Cyclop robot was developed in the Department of Electronics and
Telecommunications of the Aveiro
University, aiming to participate in Robótica
2001 � National Robotics Festival and in
FIST 2001 � International Festival of
Sciences and Technologies. This project was
developed by 4 students during their
pre-graduation seminar under the orientation
of Profs. J.L. Azevedo, P. Fonseca, M.B.
Cunha and L.Almeida.

Cyclop distinguishes itself due to his
distributed architecture, built on top of a
Controller Area Network (CAN) bus and his
WebCam based sight system, whose
processing core is a PC running a GNU/Linux OS. The whole system, whose description
follows in the next topic, is summarized in figure 1.

Fig. 1 � Cylop robot block diagram

 Linux Challenge - 2001
Student Winners

 April 2002
Page 96 of 134

2. Cyclop Robot Overview

The Cyclop robot is intended to perform a set of tasks. It has the ability to follow
a line drawn on the floor (a white line over a black background or vice-versa) while
detecting cylindrical pedestals with 4 cm of diameter holding pool balls, placed at
approximately 80 cm of the line. The robot stops following the line, collects the ball and
resumes the line following.

The Cyclop robot, as mentioned previously, has its operation based on a distributed
architecture whose communication (between the several distributed processing modules)
is assured by a Controller Area Network (CAN) bus. This bus is used by some major
automotive industry manufacturers and allows transmission rates up to 1 Mbit/s.
Furthermore the CAN bus is inherently fail-tolerant which makes it a fine choice to this
project.

Using a distributed architecture allows the existence of a smaller processing power in
each distributed node, hence making possible the usage of simpler and cheaper systems.
The Cyclop robot has three processing modules:

! "The PC, in the vision subsystem, whose Linux OS is responsible for the
more complex processing (as is the case of image processing) and for the
global control, behaving as the system �brain�, commanding the information
exchange between the different nodes;

! "The sensorial module (which comprehends a sensorial information
acquisition card and a CANivete) responsible by Cyclop�s sensorial
�Perception�.

! "The motor interface module (which comprehends a motor drive and a
CANivete) responsible by the closed-loop motor control.

The second and third modules processing power resides in the CANivete board.
CANivete [1] is a platform developed in the Department of Electronics and
Telecommunications in the Aveiro University and commercialised by Micro I/O �
Serviços de Electrónica, Lda. This board is based on Philips microcontroller P80C592
[2] and enables several functionalities, such as a CAN controller, PWM generators,
ADC�s, serial interface, etc, thus making it appropriate to be used as a CAN network
node.

The sensorial module has a second functionality, as it performs the role of a gateway
between the serial port (of the PC) and the CAN bus. It would have been possible (and
even desirable) to separate these functionalities but due to structural motives this
possibility wasn�t developed.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 97 of 134

3. Linux, Control and the Vision Subsystem

The vision subsystem comprises a Philips WebCam (USB ToUcam Pro PCVC740K) and
a 100MHz Pentium Laptop PC running RedHat 6.2 in kernel 2.4.3. The option for a
GNU/Linux O.S. was made due to its open source philosophy, thus making easier the
software development phase. Furthermore Linux is by far the most reliable and robust
O.S., especially in embedded-like applications where we face critical time restrictions.
During development phase kernel 2.4.3 was the latest version with USB device drivers,
hence the option for this kernel. This Web Cam was supported by just a few kernels and
the use of this one in particular implied a patch and a recompilation. These operations
allowed the Web Cam to work at its maximum frame rate (30 fps).

The communication between the Linux PC and the CAN Network was achieved
through a RS232-CAN gateway. This implied the development of routines with the
serial port communication using its device drivers.

The video acquisition and processing core was built on top of Video4Linux
drivers, allowing to try different cameras/frame grabbers and vision solutions to obtain
the best performance.

In order to download the compiled HEX files to the CAN nodes controller cards,
it was also developed an application, a LOADER, allowing this programming to be
done from the Linux PC console. The original LOADER was developed on a MS-DOS
environment which was contrary to the project�s philosophy.

Obviously, as in any Linux-based system, all the software was developed in
ANSI C, using gcc compiler for Linux modules and Linux SDCC for the 80C51 based
card (CANivete).

Most of the information used in this project�s progress was gathered through the
Internet, namely on:

! www.linux-usb\devices.html
! www.smcc.demon.nl (support for Philips USB webcams)
! www.linuxdoc.org
! www.freshmeat.net
! soureforge.net

 Linux Challenge - 2001
Student Winners

 April 2002
Page 98 of 134

4. Results

The participation of the Cyclop robot in the FIST competition was canceled due
to repeated postponements of the event�s realization date by its promoters.
Nevertheless the Cyclop robot accomplished a brilliant performance in the
National Robotics Competition, winning the first prize and the Engineering Award.
Three small videos with the robot performing its main tasks, during the test
phase, are sent in attachment.

5. Further Developments

Further developments on this project include:

! Evolution from the kernel 2.4.3 to a real-time kernel in order to use real-time
threads;

! Rewriting interrupt-driven serial port device drivers resulting in a more efficient
system;

! Modifications on the processing core allowing the use of two cameras.

6. References

[1] �CANivete � User�s Manual�
Micro I/O � Serviços de Electrónica, Lda., 1999

[2] �P8xC592 � 8 bit microcontroller with on-chip CAN Datasheet�
Philips Semiconductors, June1996

[3] �80C51 family hardware description�
Philips Semiconductors, August1996

[4] �CAN specification version 2.0 � Technical Report�
Robert Bosch GmbH, 1991

Kernel-HOWTO, The Linux Kernel HOWTO
Module-HOWTO, Linux Loadable Kernel Module HOWTO
Modules, Linux Modules Installation mini-HOWTO
Kerneld, The Linux kerneld mini-HOWTO
BogoMips, BogoMips mini-HOWTO
BootPrompt-HOWTO, The Linux BootPrompt HOWTO
Serial-HOWTO, Serial HOWTO
Serial-Programming-HOWTO, Serial Programming HOWTO

 Linux Challenge - 2001
Student Winners

 April 2002
Page 99 of 134

Paper Submitted by:
Helmut Cantzler

(helmutc@dai.ed.ac.uk)

University:
University of Edinburgh

Country:
United Kingdom

 Linux Challenge - 2001
Student Winners

 April 2002
Page 100 of 134

Application in the Area of 3D Modeling
- Mesh Viewer -

A Lightweight Tool to Display Triangular Meshes

1. Description

The Mesh Viewer [11] is an easy to use lightweight application to display triangular
meshes from a variety of file formats. Triangular meshes can be rotated, translated and
scaled (all done with the mouse). The model is lighted by multiple light sources. Models
can be displayed texture mapped (optional with bilinear filtering), solid or as a skeleton
(full or just the front lines). The surface normals of the triangles can be displayed.
Features (from a different data file) like edges and points can be displayed into the mesh.
Viewpoints can be saved. Screenshots of the model can be taken (as BMP, JPEG, PNG
and so on).

In the free software community is a shortage of this kind of software. Now with the recent
advantages in 3D acceleration under Linux (DRM and GeForce driver), it is time to
advance the 3D software as well. A related software project is Geomview[5]. It can
display 3D models as well. The Mesh Viewer differs from Geomview in some ways.
Mesh Viewer is a more lightweight application concentrating only on displaying of
triangular meshes. It uses a newer graphical user interface library and supports several
different file formats. It supports until now files from the Gnu Triangulation Library[8],
Geomview file[5] (only polygons consisting of 2 or 3 vertices), pmesh files (used at the
University of Edinburgh) and VRML 1.0/2.0 files. Only shapes consisting of triangles are
read from the data files. Shapes in VRML 2.0 are rotated, scaled and translated if
necessary. The file name for JPEG texture and texture coordinates are read from VRML
2.0 files if existent. VRML 2.0 support was fairly important for the Mesh Viewer
development. It started as a development to display reconstructed scenes (computer
vision). These scenes are typically saved as VRML 2.0 files[9, 4].

 Linux Challenge - 2001
Student Winners

 April 2002
Page 101 of 134

2. Methodology

The project was developed with C++. The first component which was created was the
mesh class. It can read and write the different file formats described above. A mesh
consists of triangles, edges and vertices. Edges are not necessarily part of a mesh file, but
can be created from a set of triangles and vertices easily.

Meshes can be manipulate in a number of ways. The Mesh Viewer typically maps the
mesh to the origin and scales it into a normal sphere. As a mesh file is read, properties of
the triangles like surface normal,centroid, size, perimeter and distance to the origin are
calculated using vector algebra. Similarly, for the edges the length, centroid and
orientation is calculated.

OpenGL[10] was used to display the triangular meshes. It is the industry’s most widely
used and supported 3D graphics application programming interface (API). [13] provides
excellent information on OpenGL and the OpenGL Utility Library. Mesa 3.4.2 with
XFree 3.3.6 and the Nvidia GeForce Drivers with XFree 4.1.0 were used as OpenGL
libraries. OpenGL is used with enabled depth buffer, double buffering (for flicker-free
drawing), the RGB color mode and the stencil buffer. The OpenGL initialization function
sets context rendering flags, lighting, texture and a few variables. Texture filtering is used
if activated. A function, which is called whenever the OpenGL widget needs to be
painted, draws the 3D model depending on the display mode. The model can be drawn as
triangles with texture, solid triangles, triangles (wire frame), front lines, edges or points.
Surface normals of the triangles are drawn if activated. The model is rotated or translated
according to the received mouse move events depending on the last mouse press event
(all three mouse buttons are used).

To be able to display textured models it is necessary to read images and convert them into
an useful format for the OpenGL library. This is done at two stages. Firstly, texture is
expected to be stored in jpeg format. Libjpeg[3] is used to read the image file. The second
stage is the scaling of the texture. OpenGL expects that texture is in an array of the size 2n

by 2n. So, the original image is scaled to a suitable size. So, the original image is scaled
to a suitable size.

Two toolkits were used to handle the user interface issue of the project. The Mesh Viewer
can use either of them. Though, much more functionality is provided with the QT
version. Firstly, the OpenGL Utility Toolkit (GLUT)[2] was used. It is system
independent and implements a simple windowing application programming interface
(API) for OpenGL. GLUT is well-suited to develop simple OpenGL applications. A
simple pop-up menu and a few shortcuts gives access to functionality like changing
display mode (“1”...”6”), enabling surface normals and so on. Secondly, a more
sophisticated toolkit was used. The Qt[1] toolkit is a cross-platform C++ GUI application

 Linux Challenge - 2001
Student Winners

 April 2002
Page 104 of 134

framework from Trolltech. The toolkit includes an excellent documentation with a small
tutorial. The library provides application developers with all the functionality needed to
build state-of-the-art graphical user interfaces. Standard GUI components like a menu, an
icon bar, a status bar and progress bars are used. The menu gives access to most of the
functionality. The icon bar is a quick way of opening a model, changing the display mode
or changing the light intensity. The status bar displays information about the model and
the rendering speed (frames per second (FPS)) of the OpenGL widget. The OpenGL
widget is in the middle of the main window. Beside the OpenGL widget is a slider
responsible for changing the clipping of the displayed 3D Model.

A web page for the Mesh Viewer was created at:
http://www.dai.ed.ac.uk/˜helmutc/mesh_viewer/.

The web page describes the project, the 3D formats, how to use it and the known bugs. It
lists the software requirements. Some screenshots of the program are on the page. At the
bottom is a link to the source code. The Mesh Viewer (with the web page) is now listed at
three major free software indexes in the Internet. It is listed at Freshmeat[6],
Apps.kde.com[7] and the free software index of Trolltech[12]. At the first day after
listing the project 400 people visited the page. Though, at the following days the number
of visitors settled down between 10 and 30 per day.

3. Achievements

This project was started without knowing anything about OpenGL, Libjpeg, GLUT or
QT. It turned out that these libraries were fairly easy to use and that the documentations
are very good. The online documentation form Libjpeg, GLUT and QT was for the
project more than sufficient. Only for OpenGL a special book[13] was needed.
Unfortunately, the book does not make it clear that texture must be of the size 2n by 2n.
Much time was needed to realize that. Scaling the image properly solved the problem.

The mesh class and its support classes rely heavily on the Standard Template Library
(STL). Lists, vectors, sets, maps and pairs were used. STL is very easy to use and fairly
fast. Though, it seems that there are some memory usage issues.

The OpenGL part is one of the main components of the project. A few details make the
rendering visually more interesting. First of all, texture mapping with all the possible
options is very important to enhance 3D models. Furthermore, using lighting from the
right positions with the right amount of diffuse resp. ambient light is very important to
present a good looking model. The Mesh Viewer uses 4 light sources, which is a good
compromise between good lighting and rendering speed. Displaying front lines with the
stencil buffer gives very good results. Though, rendering speed is slow even with a
GeForce graphics card.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 103 of 134

Using two different toolkits for the graphical user interface was fairly interesting. Both
toolkits provide the same functionality for OpenGL programming. So, most of the source
code can be used for both toolkits. �glmesh_common.cc� is basically the same file in
both directories (glut and qt). GUI programming with QT as it turned out is very easy and
intuitive to use. The documentation with the 14 step tutorial and the example applications
were very helpful. Many techniques in QT like the layout managers are similar in Java
(AWT/Swing).

Extracting data from more complex file formats like VRML 2.0 is very challenging.
Mesh Viewer does not extract all information out of it and probably never will. However,
vertices, triangles and the texture coordinates (with the image file) are read fairly reliable.
Shapes in VRML 2.0 are rotated, scaled and translated if necessary. This was a major
breakthrough for one particular model.

Using the free software indexes is an easy way of getting attention from other members
of the community. I got already a few emails asking me mainly how to compile or use it.

References

[1] QT 2.x. Http://www.trolltech.com/qt/.

[2] GLUT 3.7. Http://reality.sgi.com/mjk/glut3/glut3.html.

[3] Libjpeg 6.x. Http://www.ijg.org.

[4] National Research Council (NRC) Canada. Http://www.vit.iit.nrc.ca/VIT.html.

[5] Geomview. Http://www.geomview.org/.

[6] Freshmeat: Largest index of Unix software. Http://freshmeat.net/.

[7] The latest in KDE and Qt Applications. Http://apps.kde.com/.

[8] Gnu Triangulation Library. Http://gts.sourceforge.net/.

[9] Marc Pollefeys� models. Http://www.esat.kuleuven.ac.be/˜pollefey.

[10] OpenGL. Http://www.opengl.org.

[11] Mesh Viewer Web Page. Http://www.dai.ed.ac.uk/˜helmutc/mesh_viewer.

[12] Free Qt software index at Trolltech.
Http://www.trolltech.com/developer/freesoftware/.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 104 of 134

[13] M.Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL(R) Programming Guide: The
Official Guide to Learning OpenGL, Version 1.2.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 105 of 134

Paper Submitted by:
Barnaby Gray

(bgrg2@cam.ac.uk)

University:
University of Cambridge

Country:
United Kingdom

 Linux Challenge - 2001
Student Winners

 April 2002
Page 106 of 134

Category Software -
Communication Application

Project and Objectives

The project which I set out to implement was an ICQ Instant messaging client to
implement the new ICQ2000/2001 TCP based protocol and bring some of the
functionality previously only available to Windows users to Linux users.

My prime objectives were to support logging in to the Authentication Server (the
Authorizer) and then with the credentials received logging in to the Basic Oscar Server
(BOS) that provides the majority of the service on the ICQ network. To support adding
and removing 'buddys' from your contact list and to support user information retrieval
(alias, first and last names, email addresses, etc.). Also to support the most important
features - sending/receiving messages through the server and sending and receiving SMS
messages through the ICQ-SMS gateway. The Graphical User Interface (GUI) should be
easy to use and represent a familiar and efficient interface to the user without requiring
any detailed programming or protocol knowledge.

Methodology

Initially the biggest and most time consuming step was developing the protocol
communication part of the client. I had decided from the start that the most logical way of
coding it was to split it in two. The first part is the library (called libicq2000) which
handled logging in, maintaining a connection, handling server messages and encoding
messages sent to the server. The second part is the User Interface which will link to this
library and use it to perform all the low-level protocol and sockets communication. This
provided a clean abstraction layer between application and protocol.

The code was all written in C++ since then Object-Orientated methodologies could be
practiced. Wrappers round C calls were coded by me for all the underlying socket
functionality, and the excellent gtkmm C++ bindings for gtk were used for the graphical
toolkit.

The actual details of the Oscar/ICQ protocol will not be entered into here, but it logically
splits up into a basic layer (called the FLAP), which encapsulates the most commonly
used units of communication (called SNACs). See
http://www.aim.aol.com/javadev/terminology.html for an
explanation of terminology. These correspond direcly to objects within the library and
the result of parsing a packet will be these SNAC objects. The type of SNACs and
information contained within is then manipulated and used to change the state of the
Client object internally or to signal to the User Interface of an event. All events were

 Linux Challenge - 2001
Student Winners

 April 2002
Page 107 of 134

implemented with a base Event class and hierarchy of event classes derived from this.
The protocol is poorly documented and what documentation there is is thin and often
bug-ridden. I had to put a lot of work into figuring out parts of the protocol and research
into this to begin with. I wrote a whole system for deconstructing packets into their
constituent parts and from this I could more easily decipher streams of communication
between the client and the server.

The coding of the GUI was developed partly alongside the library when enough was
working, with complex widgets being created (constructed out of gtk widgets) to
represent the Message Box, the Contact List and other dialog boxes involved. I
challenged the normal instant messaging paradigm and reached new, and what I believe
to be, easier and moreefficient ways to communicate. The key one being the move
towards an IRC-style, continuous chat window for messaging which is faster and
smoother to use.

Results

In the end I released the first release of my library and client on the 1st October and I
have been updating it since, adding more features and steadily improving it. The whole
project together was 'christened' ickleand the homepage is http://ickle.sourceforge.net/.

I have had a lot of feedback from users for improvements, bug reports and feature
requests and have recently had other people joining the project to contribute code. Within
the last few weeks there has been a large shift over to the new protocol after ICQ dropped
most support for older clients, and consequently all the older protocol based Linux
clones. A sure sign of the success of the project has been its steady climb up the
Sourceforge rankings to reach a peak of 15th a week ago (out of a total of almost 30,000
Sourceforge projects) and it is now staying within the top 30 projects or so.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 108 of 134

Paper Submitted by:
Dwight Tuinstra

(tuinstra@clarkson.edu)

University:
Clarkson University

Country:
USA

 Linux Challenge - 2001
Student Winners

 April 2002
Page 109 of 134

���������
	���
�����
�����������
������!
���"�#�%$&�('*)+����,-��.0/�
��
1�2�35476 ��$& 8
9�;:<
����=.0$��?>A@CB*@C.0
D�E@

FHGJILKNM*OQPHRTSVUWRTXZYHG[G]\

^=_�`badcfeWgJhTikjTlmeonqpsrutwvfxzyT{|tw}o~������k~�}o��{���y��z�o��v��
�]� p�n|�flo��j���jTik�L��n|loike��
� ��e|l|�Tp����Q�=��_��¡ d¢�£?¤�¥�¦d§d§

¨ª©]«Q¬!­¡®¡¯�°±®¡²´³ª¯�®¶µT¬C·H«¹¸?º `b»¼�"½5¾Q¿qÀ���Á±ÂoÁ�Ã�¢� ÅÄd��Á���Æ�À�¿
Ç ©�·�ÈD­¡¯�®�É=Ê=Ë
Ì! �afÍo¿|À�¢�ÎJÏÐÀ�ÎÑ¢��ÓÒÕÔJ»¼�Ó¿q¾Q¿qÀ���Á�¿*Öu d¢�×qÌ º ½5��¿|Ø|Ù(Ú ÛQÜ]ÝfÞ�Ã�¢���¿���¢�Äd��À�ß��´`bÆ� QÒQ�Z¿q��Á�àdÆTÀ�`zÏ�¿; dá
À�¢�àdÒ�`âÀ�`¼ �ÆÑàf»5ÔÑ»b�=¿�¾Q¿|À���Á�¿�Ü�ã�ÎQÀ¡À�àf£��äà�¢�à�ÒQ`bÏ�àf»�àdÃ�Ã�¢� �àdÏ�ß"À� ;ÃÑ»bà�Ï&��Á���Æ�À¡ dá!Ò�àÅÀ�à� dÆ8À�ß��
ÒQ¢�`¼Ä��då�^�àÅÀ�àsàdÆÑÒæÁ8��À�à�Ò�àÅÀ�à*àd¢���_�¢�`âÀ�À���Æ<¿���çTÎ���Æ�À�`bàd»¼»b¾sÀ� �àZ»b daJå�èDßÑ��»¼ �a*`z¿éÆ� dÀéà
¿qÀ�àfa�`¼ÆÑa*àf¢���à´áu d¢�»zàÅÀ���¢�`¼ÆJ¿q��¢qÀ�`¼ �ÆÕ`bÆ�À� Z¿qÀ�àdã�»b��¿qÀ� �¢���Ü¹ã�ÎQÀé¢�àÅÀ�ßÑ��¢�`b¿�À�ß��(¿|À�àfã�»b��¿|À� d¢��
`¼À�¿���»¼á|åDèDßÑ`b¿�àLÄd d`zÒ�¿�À�ß��;ß�`badß?Ï& T¿|À�¿� fá¡¿�����£5¿=¿qÎQê[��¢���Òsã5¾´ÔÑ»¼��¿q¾Q¿qÀ���Á�¿DÀ�ßÑàÅÀ�àÅÀqÀ���Á�ÃQÀ
À� ëÏ�àd¢���áuÎ�»¼»b¾�Ã�»zàdÏ&�VÒ�àfÀ�à% �ÆTÀ� %À�ß��VÒQ`b¿�£[å�ì�Ò�ÒQ`¼À�`b dÆÑàd»¼»b¾dÜ=àí»b daí¿qÀ�¢�ÎÑÏ&À�Î�¢��Õ��ÆÑàfã�»b��¿
ÒQ��Äd��»b dÃÑÁ8��ÆTÀ� dáWáu�ÓàÅÀ�ÎÑ¢��Ó¿é¿qÎÑÏ�ßVàd¿�¢�àfÃÑ`bÒæÏ&¢�àd¿�ßÕ¢���Ï� ÅÄd��¢�¾dÜHÔÑ»b�(¿�¾5¿qÀ���Á#Ï&»b dÆÑ`¼Æ�aJÜCàfÆJÒ
ÔÑ»b�ä×|Î�ÆJÒQ��»b�&À��ÐØé dÃH��¢�àÅÀ�`b dÆJ¿�å
Ì º ½5�Ó¿?àf»z¿q ë_�¢�`¼À��VÎ�Ã[Ò�àfÀ���¿ZÀ� ëÀ�ß��Vß��ÓàdÒ� fá�»b daë¢�àÅÀ�ßÑ��¢ZÀ�ßÑàdÆ�ÃH��¢�áu d¢�Á�`¼ÆÑaëàdÆ

Î�Ã[Ò�àÅÀ��&Ím`¼Æ�ÍîÃ�»zàdÏ��då(èDß���ÃH �¿�`¼À�`b dÆV fá�ã�»¼ QÏ�£Q¿éÏ& �ÆTÀ�àf`bÆ�`bÆ�aZÀ�ß��´Î�ÃHÒÑàÅÀ��ÓÒVÒ�àÅÀ�à*`z¿éÆ� dÀ��ÓÒ
`bÆ�À�ßÑ��»b daJÜH`bÁ�Ã�»b`bÏ�`âÀ�»¼¾�`bÆ5ÄÅàf»b`bÒ�àfÀ�`bÆ�a(À�ß��8 d»zÒ�ã�»b QÏ�£5¿�åéìïáu d¢�Áð dáWa�àd¢�ãJàfad��Ï& d»b»b��ÏÐÀ�`¼ �Æ
`z¿�Æ����ÓÒQ��ÒZÀ� �¢��ÓÏ&»zàf`bÁñ¿�ÃÑàdÏ���À�àf£���Æsã5¾*`bÆ5ÄÅàf»b`bÒ�àfÀ��ÓÒ*ãÑ»¼ QÏ�£Q¿�å�èDß�`z¿�`b¿äÃJ��¢qáu �¢�Á���ÒZã5¾*à
ÎÑ¿���¢�Ím¿�ÃÑà�Ï&�"Î�À�`b»¼`¼À|¾ÕÏ�àd»¼»b��Òæà�×qÏ�»¼�ÓàfÆ���¢|ØÐå�^���¿�`badÆªàdÆÑÒª`¼Á�Ã�»b��Á���ÆTÀ�àÅÀ�`b dÆæ fáDÏ&»b��àdÆ���¢�¿�`b¿
 dÆÑ�� dáCÀ�ß��éÃ�¢�`¼Á�àf¢�¾´Ï�ßÑàd»¼»b��ÆÑad��¿�`bÆ?Ï&¢���àÅÀ�`¼ÆÑa8àdÆ*��ò�Ï�`¼��ÆTÀ=àfÆÑÒ*¢� �ã�ÎÑ¿qÀäÌ º ½[å
ì�À�Ã�¢��Ó¿q��ÆTÀ�ÜTÀ�ß���¢���àfÃÑÃJ�Óàf¢�¿¡À� �ãH�� dÆ�»b¾� dÆ���Ï& �Á�Ã�»¼��À���àfÆÑÒ´_� �¢�£5`bÆ�a" �ÃJ��ÆQÍo¿q �Î�¢�Ï��

Ì º ½Z`bÁ�Ã�»¼��Á���ÆTÀ�àfÀ�`b dÆ!ó�À�ßÑàfÀ= fá0À�ß����=�&À�ô�½Q^ï dÃH��¢�àÅÀ�`¼ÆÑa(¿q¾Q¿qÀ���ÁõÚ÷öLÞîå�ÌC`¼Æ5ÎQøsßÑàd¿äÀ�ß��
Ì!`bÆÑÌC da"Ì º ½��&ê[d¢�À�Úb¤fÜ�ùÓÞîÜ5ã�Î�À�`¼À�»zàdÏ�£Q¿Wà;áuÎ�»b»¼¾� dÃH��¢�àÅÀ�`¼ �ÆÑàf»HÏ&»b��àdÆ���¢Óå¶ÂoÆÑ`âÀ�`bàd»J_� d¢�£" �Æ
à�Ï&»b��àdÆ���¢�ßJàd¿DãH����Æ�Ò� dÆ���Ú ¥LÞmÜÑßÑ Å_���Äd��¢D`¼À=`z¿�Ã�¢���»b`¼Á�`bÆÑàf¢�¾´àfÆJÒZÒ���Äd��»¼ �Ã�Á���ÆTÀäàfÃ�ÃH��àd¢�¿
¿qÀ�àf»b»b��Ò¹å�èDß��éÌ!`bÆ5ÎQø5ÍîãJàd¿���Ò*½Q_�àd¢�Á´úf½5À�`bÆ�a"Ã�¢� fû|�ÓÏÐÀD_�à�¿DÒQ��¿�Ï&¢�`¼ãH��Ò´`¼Ææ¤�§�§d§´Ú ¦fÞîÜQã�Î�À�à
Ã�Î�ãÑ»¼`zÏ�¢���»¼�Óàd¿��� dáCÀ�ß��;Ï& QÒQ�;¿�����Á�¿DÆÑ fÀDÀ� �ßÑàLÄ���ßJàfÃ�ÃH��Æ��ÓÒZ¾d�&ÀÓå

³s©0¯Q«Nü�¸�³ª¯�®¶µT¬C·H«ý©�Ê�Ëõþ<ÿDµT¬C·H«����W¬��
èDß�`z¿]Ã�¢� dû|��Ï&À]¿�����£Q¿CÀ� �Ã�¢� ÅÄT`zÒQ�Wà�¢� dã�ÎÑ¿qÀ�ÜL_���»b»âÍoÒQ QÏ&ÎÑÁ8��ÆTÀ���Ò!ÜLáuÎ�»¼»b¾TÍ�áuÎÑÆÑÏÐÀ�`¼ �ÆÑàf»QÏ&»b��àdÆ���¢
áu d¢�À�ß��(Ì!`bÆÑÌ! �aZÌ º ½��!àfÆÑÒª`bÆÕÀ�ß���Ã�¢� 5Ï���¿�¿=ÃÑ¢� QÒQÎÑÏ���à*a���Æ���¢�àd»Cáu¢�àfÁ���_� �¢�£Záu d¢;Ï� dÆQÍ
¿qÀ�¢�ÎÑÏÐÀ�`¼Æ�a�Ì º ½ZÏ�»¼�ÓàfÆ���¢�¿�å

¤

³s©0¯Q«��D¸�� ¬!«��=®�Ëä®��q®¡­�°ñ©�Ê�Ë	� ¬ � �|­WÊ

äàfÀ�ß���¢¡À�ßJàfÆ´ÃÑÎÑ¿qß(áu d¢�_�àd¢�Ò8 dÆ*à;Ã�¢���»b`¼Á�`bÆÑàf¢�¾�àfÆÑÒ�ÎÑÆ�Ã�¢� ÅÄd��Æ�ÆJàÅÀ�`bÄd��Ì!`bÆTÎ�ø�Ï�»¼�ÓàfÆ���¢�Ü
À�ßÑ�(àfÃ�Ã�¢� �à�Ï�ßÕ`z¿�À� ?a���Æ���¢�àd»¼`����8À�ß��(�ä��À�ô�½Q^±Ï�»¼�ÓàfÆ���¢é`¼ÆTÀ� �àfÆ<Ì º ½æÏ&»b��àdÆ���¢�áu¢�àfÁ��&Í
� d¢�£HÜCÀ�ß���Æ%¿qÃH��Ï�`bàd»¼`����(À�ßÑàfÀ;áu¢�àdÁ���� d¢�£?áu d¢éÀ�ß��*ÌC`¼Æ5ÎQøVÌ!`bÆÑÌ! �a�Ì º ½[å0èDß��(a���Æ���¢�àd»
áu¢�àfÁ���_� d¢�£�_�`b»¼»�ãJ�*¢���»¼�Óàd¿���ÒVÎ�ÆJÒQ��¢8à�ô�½Q^äÍo¿qÀ|¾T»b�(»b`bÏ���ÆÑ¿��*¿�`bÆÑÏ&�(`¼À�`z¿8ÒQ��¢�`¼Ä���Òªáu¢� dÁ
ô�½Q^=Íî»b`bÏ���ÆÑ¿���ÒýÏ& QÒQ�*àdÆÑÒ<_�`b»¼»DãH�*ÒQ �ÆÑàÅÀ���Ò<ãJàdÏ�£ªÀ� ªÀ�ß��Z�ä�&À�ô�½Q^ðÃ�¢� dû|��Ï&À�åVÌ!`bÆTÎ�øTÍ
¿�ÃJ�ÓÏ&`¼ÔJÏ8ÃJ �¢qÀ�`¼ �ÆÑ¿�_�`¼»b»�ãH��¢���»¼�Óàd¿���Ò�ÎÑÆÑÒQ��¢�À�ß���
��WÌWåCèDß���ô�½Q^�»b`bÏ���ÆÑ¿���`b¿éàdÆª �ÃJ��Æ
¿� dÎ�¢�Ï&��»¼`zÏ&��ÆÑ¿��då
���������������sìäÆ5¾Z£d��¢�Æ���»¶Ï& �Á�ÃJ �Æ���ÆTÀ�¿=_�`¼»b»CãH�"_�¢�`¼ÀqÀ���Æ?`¼Æ���å���� � _�`¼»b»CãH�"ÎJ¿q�ÓÒ

áu d¢�À�ßÑ�Z¢���¿qÀ�Ü¡áu d¢�`âÀ�¿�¿qÎ�ÃÑÃJ �¢qÀ� fá� dãQû|�ÓÏÐÀqÍm d¢�`b��ÆTÀ��ÓÒVÃ�¢� �ad¢�àfÁ�Á�`¼ÆÑaÑÜ�`bÁ8ÃÑ¢� ÅÄ���ÒV��¢�¢� d¢�Í
ßÑàdÆÑÒQ»b`¼Æ�a%À�ß�¢� dÎ�a�ß �&ø�Ï&��ÃQÀ�`b dÆJ¿�ÜäàdÆÑÒ ãH�&ÀqÀ���¢ZÁ���Á� d¢�¾íÁ�àdÆÑàfa���Á���ÆTÀ(À�ß�¢� �Î�adß Ï� dÆQÍ
¿qÀ�¢�ÎÑÏÐÀ� d¢�¿éàfÆÑÒ<ÒQ�Ó¿|À�¢�ÎJÏÐÀ� �¢�¿�Ö�Ï&»b��àdÆ���¢�¿éÁ�àf£���ß���àLÄ5¾�ÎÑ¿��(dá�¿�Ï&¢�àÅÀ�Ï�ßªÁ���Á8 �¢�¾�Ù&åZèDß��
`bÁ8ÃÑ¢� ÅÄ���Ò�Á� QÒQÎ�»zàf¢�`¼À|¾ÕàfÆÑÒÕá àdÏ�`¼»b`¼À�àÅÀ�`¼ �ÆV fá�Ï� QÒQ��¢���á àdÏ&À� d¢�`bÆ�a*¿�ß� dÎÑ»bÒæ��ÆJàfã�»b��`¼Á�Ã�»b�&Í
Á���ÆTÀ�àfÀ�`b dÆZ fá�Ì º ½´��Æ�ßÑàdÆÑÏ&��Á���ÆTÀ�¿DÃ�¢� dÃH �¿���Ò*`bÆ*À�ß��é»b`âÀ���¢�àÅÀ�ÎÑ¢��8Ú !dÞîå
"$#&%(')�+*-,�" .���/)�+/�Ö|¤ÓÙ�
���á àdÏÐÀ� d¢¶À�ß��D��ø5`z¿qÀ�`bÆ�a��=�&À�ô�½Q^ Ï�»¼�ÓàfÆ���¢CÀ� �¿�`bÁ8ÃÑ»¼`¼áu¾é`âÀ�àfÆJÒ

¿�Ã�»¼`¼À=`¼À�`bÆTÀ� (a���Æ���¢�àd»CàfÆÑÒ?�=�&À�ôD½�^äÍo¿qÃH��Ï�`âÔHÏ;Ï& �Á8ÃH dÆÑ��ÆTÀ�¿�å;Ö�ù�Ù�
���»b��à�¿q�ÅúÅÒQ �ÆÑàÅÀ�`¼ �Æ* dá
Á�`bÒQÍîãH�&À�àÅÍoç�ÎJàf»b`âÀ|¾�¢��&á àdÏ&À� �¢��ÓÒ Ï& QÒQ��À� ýÀ�ß��V�ä�&À�ô�½Q^ Ã�¢� fû|��Ï&À�å ìäÆTÀ�`zÏ&`bÃÑàfÀ���Ò�Ò�àÅÀ��dó
0TàfÆ5ÎÑàf¢�¾*ù2121�ù�å�Ö�¥�ÙDÂoÁ�Ã�»b��Á���ÆTÀäÀ�ß���¿�ÃH��Ï&`zàf»b`���àÅÀ�`¼ �Æ?Ï&»zàd¿�¿q�Ó¿Dáu d¢=ÌC`¼ÆJÌ! daJå�ì�ÒÅû|ÎÑ¿|À�À�ß��
áu¢�àfÁ���_� d¢�£%àd¿�Æ��ÓÏ&�Ó¿�¿�àf¢�¾VÀ� VÀ���àd¿��s dÎQÀ�À�¢�ÎÑ�?ad��ÆÑ��¢�àf»b`3�ÓàÅÀ�`b dÆJ¿�Ü¡ãJàdÏ�£TÍîÃH d¢�À�`bÆ�aªÀ�ß��Ó¿q�
À� ZÀ�ß����ä�&À�ô�½Q^�Ï&»b��àdÆ���¢Óå*Ö4!TÙ$
���»¼�Óàd¿��LúfÒQ dÆÑàfÀ�`b dÆ� dá�Á�`zÒ5ÍîãH�&À�àÅÍoçTÎÑàf»b`âÀ|¾�Ï� QÒQ�8À� ZÀ�ß��
Ì!`bÆÑÌC dasÃ�¢� fû|��Ï&À�åZìäÆTÀ�`zÏ&`bÃÑàÅÀ���ÒVÒ�àfÀ��dó º ��ã�¢�ÎJàf¢�¾�ú-5�àf¢�Ï�ßªù2121�ù�åÕÖ�Û�Ù�^=��Äd��»¼ �Ãæ£���¢�Æ���»
ÃH d¢�À�`b dÆÑ¿0 dá¹ÌC`¼ÆJÌ! da�À� ;¿qÎ�ÃÑÃJ �¢qÀ¡`bÁ�Ã�¢� ÅÄ���Ò�ÃJ��¢qáu �¢�Á�àdÆÑÏ&�;Ö�¿qÎÑÏ�ß�à�¿0�&ò(Ï&`b��ÆTÀWÃ�¢� ÅÄ5`b¿�`b dÆ
 fá0àé×q¿���a�ÎÑ¿q��À�àfã�»b�ÐØéàd¿DÁ���ÆTÀ�`b dÆÑ��Ò*ãJ��»¼ Å_=Ù&å¡ìäÆTÀ�`zÏ&`bÃÑàÅÀ���Òs¿qÀ�àf¢�ÀäÒ�àÅÀ��dó65�àd¢�Ï�ß?ù-171�ùQå
89�+/):4���%èDß��8ÒQ��¿�`¼a�Æ?Á� 5Ò���»z¿�À�ßÑ�;ß�`badßQÍm»¼��Äd��»! dãQû|�ÓÏÐÀ�¿ä`bÆÕàfÆ�Ì º ½¹ÜÑ��ÆJÏ�àfÃJ¿qÎ�»zàÅÀ�`¼ÆÑa

À�ßÑ�"`bÁ8ÃÑ»¼��Á8��ÆTÀ�àÅÀ�`¼ �ÆªÒQ��À�àd`¼»z¿= dáWà´¿�ÃJ�ÓÏ&`¼ÔJÏ8Ì º ½[å[èDß���a���Æ���¢�àd»¶Ì º ½�Ï&»b��àfÆÑ��¢�àdÏÐÀ�¿ä �Æ
À�ßÑ��¿��� �ãQû|��Ï&À�¿�å;5�àÅû| �¢�Ï&»zàd¿�¿q�Ó¿�àd¢��éà�¿�áu d»b»¼ Å_ä¿�ó

<>=3?A@&B�?DCFEHGJIK=3L Á� QÒQ��»b¿éàd»¼»�Ï& �ÆTÀ�¢� d»0ÃÑàf¢�àfÁ���À���¢�¿=À�ßÑàfÀéàfêH�ÓÏÐÀ�À�ßÑ�8ãH��ßJàLÄT`b d¢� fá�À�ß��
Ï&»b��àdÆ���¢ÓÜ�¿�ÎÑÏ�ß�àd¿¡À�`bÁ��� dÎ�ÀWÃJ��¢�`b QÒ�¿�ÜTàdÁ8 �Î�ÆTÀ¡ fá!Ï&»b��àdÆ�`bÆ�a;ÃH��¢�Ï�»¼�ÓàfÆ���¢¡_Dàf£d��Î�Ã!ÜdÒ���ã�Î�a
àfÆJÒ´»b da�ad`bÆ�a�»b��Ä���»z¿�Ü�àdÆÑÒZ¿q � dÆCå
MON;P ERQSB)TJU2L Á8 QÒQ��»b¿DßÑ`¼a�ßQÍî»b��Ä���»¹`bÆQáu d¢�Á�àÅÀ�`¼ �ÆZàdãJ �ÎQÀäà�Á� �Î�ÆTÀ���ÒsÌ º ½¹å
V B�UXW7?YERZ[@]\^L ½5`bÆÑÏ&�=Ì º ½5��¿W_�¢�`¼À��äÁ� QÒQ`¼ÔÑ��Ò(`¼Æ� QÒQ�Ó¿�À� éÀ�ß���ß���à�Ò� fá[À�ßÑ�=»b daÑÜdÀ�ß���¢��

Á"ÎJ¿|À�ãJ��à�Á���àdÆÑ¿= dáWÒQ`z¿�Ï� ÅÄd��¢�`bÆ�a�À�ß��8 dÆ�ÍmÒQ`z¿�£*»b QÏ�àÅÀ�`¼ �Æ� fáWà´ad`bÄd��Æ?`¼Æ� QÒQ��å�èDßÑ�"ÂoÆQÍ
 QÒQ�2_�Á�àdÃéÁ8 QÒQ��»b¿CÀ�ßÑ��Ì º ½é`¼Á�Ã�»b��Á���ÆTÀ�àÅÀ�`b dÆ8¿|À�¢�ÎJÏÐÀ�ÎÑ¢���À�ßÑàÅÀ�Ï& �ÆTÀ�àf`bÆÑ¿!À�ß�`z¿CÁ�àdÃ�Ã�`bÆ�aÑå
P ?a`2ZH?DBbIcL[d ¢�`¼À�`bÆ�a�àdÆÑÒVÏ&»b��àfÆÑ`¼Æ�as`bÆ<àfÆVÌ º ½ÕÀ�àf£���¿�Ã�»zàdÏ��(àÅÀ�À�ßÑ��»¼��Äd��»W fá¡×q¿���adÍ

Á���ÆTÀ�¿|ØÐÜÅ_�ß�`bÏ�ß8Ï& �Æ�À�àf`bÆ"Ò�àfÀ�à�ã�»¼ QÏ�£Q¿0àfÆÑÒ"`¼ÆÑ 5Ò���¿¶áu¢� �Á�ÖuÃH �¿�¿q`bã�»b¾éÁ"Î�»¼À�`bÃ�»b�ÓÙCÔÑ»b��¿�å]èDß��
Ì º ½* dÆ�ÍmÒQ`z¿�£�ÃÑàf¢�À�`¼À�`b dÆZ`b¿äÁ8 QÒQ��»¼»b��Òsà�¿�àdÆ?àf¢�¢�àL¾� fá�½5��a�Á���ÆTÀ�¿�å
P ?a`2e+fJ?]ERIa@7gJ=�?XL èDß�`z¿0`z¿�à=á à�¿|À�Ímà�Ï�Ï���¿�¿]¿�Î�Á�Á�àf¢�¾é fá[ÎÑ¿�àfad�DàfÆJÒ�àdad`bÆ�aé¿|À�àÅÀ�`z¿qÀ�`zÏ�¿]áu d¢

��à�Ï�ß�¿���a�Á8��ÆTÀ�ÜÅÎ�Ã[Ò�àÅÀ���Ò8ÒQ¾5ÆÑàfÁ�`zÏ�àd»¼»b¾éã5¾�À�ß���Ì º ½"£d��¢�Æ���»QÏ& dÁ�ÃH dÆ���ÆTÀ�¿�å¶èDß���Ï&»b��àdÆ���¢
¢���àdÒÑ¿HÀ�ß�`z¿C`bÆQáu �¢�Á�àÅÀ�`¼ �Æ�À� äÒQ�ÓÏ&`zÒQ�¡_�ß�`zÏ�ß;¿q��adÁ���ÆTÀ�¿[À� =Ï�»¼�ÓàfÆ!å�Ö èDß��WÌC`¼ÆJÌ! daäÌ º ½�»bà�Ï�£5¿
À�ßÑ`b¿äÀ�àfãÑ»¼��ÜÑÁ�àf£5`bÆ�a(àfÆ5¾*Ï�»¼�ÓàfÆ�`bÆ�a(��ø5À�¢���Á���»b¾´`bÆ��&ò(Ï�`¼��Æ�ÀÓå�häÆTÀ�`b»!À�ß�`b¿=áu��àfÀ�Î�¢��;Ï�àdÆ?ãJ�
àdÒÑÒQ��Ò*À� *Ì!`bÆÑÌ! �abi ¿D£d��¢�Æ���»CÏ& �Á8ÃH dÆÑ��ÆTÀ�¿�Ü�À�ß��"Ì!`bÆÑÌC da�`bÁ8ÃÑ»¼��Á8��ÆTÀ�àÅÀ�`¼ �Æs fá0À�ß�`z¿=Ï�»bà�¿�¿
_�`b»¼»!¢���çTÎ�`b¢���à�Ï�Ï&�Ó¿�¿�`bÆ�a"À�ß��;àdÏ&À�ÎÑàd»¹ dÆQÍoÒQ`z¿q£*¿q��adÁ���ÆTÀ�¿�å÷Ù

ù

³s©0¯Q«��D¸���¬ �5É �|«��
èDß���Ã�¢� fû|�ÓÏÐÀ�`b¿äÃ�¢��Ó¿q��ÆTÀ�»b¾�`¼ÆsÃ�ßÑà�¿q�� �Æ��dÜÑàdãÑ¿qÀ�¢�àdÏÐÀ�`¼ÆÑa8àdÆÑÒ´a���Æ���¢�àd»¼`���`bÆ�a�À�ß��Ó�ä��À�ô�½Q^
Ï&»b��àdÆ���¢0Ï& QÒQ��å¶èDß�`z¿]`b¿]à�Æ� dÆQÍîÀ�¢�`bÄT`zàf»dÀ�à�¿q£;ÒQÎÑ�WÀ� =»zàL¾d��¢�¿! dáÑÁ�àf`bÆTÀ���ÆJàfÆÑÏ���àfÆJÒéáu��àfÀ�Î�¢���¿
àdÒÑÒQ��Ò%À� ªÀ�ß��s d¢�`bad`bÆÑàf»�¤�§�§�ù?ô�½Q^ !Jå !æÏ& QÒQ�VÚ÷öÓÞîå ��Î�¢�¢���ÆTÀ8_� �¢�£[Ü�`bÆÑÏ&»bÎÑÒQ`bÆ�a h 5�Ì
ÒQ`zàfa�¢�àdÁ�¿�Ü�Ï�àdÆ%ãJ�*áu dÎÑÆÑÒ%àÅÀsÚb¤X1LÞmå���Æýà�Ã�¢���Ä5`b dÎÑ¿�¢��&á àdÏ&À� �¢�`bÆ�a�àÅÀ�À���Á8Ã�À?Ö Ã�¢�`¼ �¢;À�
À�ßÑ�äad Tàf»Q fá!Ï� dÆÑ¿qÀ�¢�ÎÑÏÐÀ�`¼ÆÑa;à�ad��ÆÑ��¢�àf»Qáu¢�àfÁ���_� d¢�£�ÙÐÜfàdÃ�Ã�¢� Lø5`bÁ�àÅÀ���»b¾;ßÑàf»¼á¹ fá¹��à�Ï�ß� fá[À�ß��
À|_� ´Á�àÅû| �¢�Ï�»¼�ÓàfÆ���¢�Ï& QÒQ��ÔÑ»b��¿�Ö GD=3?A@&B�?JC]W��SG àfÆJÒ = Q4gDCY@&C	���SG Ù�ßÑà�Ò�ãH����Æª¢��ÓÏ& �ÆÑ¿|À�¢�ÎJÏÐÀ��ÓÒ
`bÆæàdÆª �ãQû|��Ï&ÀqÍm d¢�`¼��Æ�À���Ò�á àd¿�ß�`¼ �ÆæàdÆÑÒª_���¢���¢�Î�Æ�Æ�`bÆ�as`¼ÆV¢���a�Î�»bàd¢�ÎJ¿q�� dÆªÀ�ßÑ�(àfÎQÀ�ß� d¢)i ¿
_� d¢�£5¿qÀ�àfÀ�`b dÆ!å

���
��������������

Úb¤&ÞR� ���X��àfÀ�£d�(àdÆÑÒ��¡¢�À�»îÜ[×�Ì!`bÆÑÌ! �a º ½�Í�ì�Ì! �afÍ|½TÀ�¢�ÎÑÏ&À�Î�¢���Ò º `¼»b��¿�¾Q¿|À���Á�áu �¢"Ì!`bÆ5ÎQøTØ�å
� CYU)GA?A?]W-QSB(`-f U T I���?�� �!���#" P%$'& V)(+* BbB eb@&=-, ?AG.��BbQ4GA@&= <;U&BXTJ?DCY?DB�GA?�/ N CY?A?DBbQ10
,�CY@2G323465 ù-17121Ñå

Ú÷ùLÞR� ���X��àfÀ�£d�*àfÆÑÒ7�W¢qÀ�»�Ü¶×�Ì!`bÆÑÌC da º ½ªÍ�ìñÌC dafÍ|½TÀ�¢�ÎÑÏ&À�Î�¢���Ò º `b»¼�Ó¿q¾Q¿qÀ���Á áu �¢8ÌC`¼Æ5ÎQøTØ
Öu_���ã?¿�`âÀ��ÓÙ&å�ßTÀqÀ�ÃCó÷ú�úL_�_�_éå Ï& dÁ�Ã�»zàfÆÑaÑå À�Î5_�`¼��Æ!å àdÏfå àÅÀ&úÅÏD���D�ÓàÅÀ�£d�LúÅ»âá ¿�å ß�À�Á�»�å

Ú ¥ÅÞ
�àÅÀ|_� 5 QÒ¹Ü ×�èDß�� ÌC`¼Æ5ÎQø Ì! �afÍo¿|À�¢�ÎÑÏ&À�Î�¢���Ò ��»b��àfÆÑ��¢ �¡¢� fû|�ÓÏÐÀqØ Ö _���ã ¿q`¼À��LÙÐå
ßTÀqÀ�Ã!ó÷ú�úL_�_�_éå a�àfÀ|_� 5 QÒ¹å Æ��&À&úLÃ�¢� fû|�ÓÏÐÀ�¿ÐúL»b`bÆ�»¼ �aÑå ßTÀ�Á�»�å

Ú !fÞ 5�àfÀqÀ�ßÑ��_ä¿�ÜO
� �¿���»b»b`�Ü��� T¿|À���»b»¼ JÜ d àdÆ�a?àfÆÑÒªìäÆÑÒ���¢�¿q �Æ!ÜJ×qÂoÁ8ÃÑ¢� ÅÄ5`bÆ�a(À�ß��H�]��¢qáu �¢qÍ
Á�àfÆÑÏ��; fá�Ì! �afÍ|½TÀ�¢�ÎÑÏ&À�Î�¢���Ò º `¼»b��¿�½5¾Q¿|À���Á�¿�_�`¼À�ß�ì�Ò�àdÃQÀ�`bÄd� 5?��À�ß� QÒ�¿|ØÐå8� CYU)GA?A?]W:9
QSB(`-f$UFT I���?<; = I�� * <�> P �&Z \�U&f Q4U&e�Z U-B�?�\b?JC]@&IKQSB(` P � fAIc?DZ f � C QSB�GJQ \�=3?Jf.5 ¤�§�§TöQå

Ú÷ÛLÞ 5�ÏA@�ÎÑ¿q`zÏ�£[ÜÑô� �¿qÀ�`zÏfÜB@éàd¢���»b¿�Ü�àfÆJÒDC�ÎJàf¢�À���¢�Á�àfÆ!Ü ��ßJàfÃQÀ���¢=Ý� dá ,8��?<E ?JfAQ `2B @-B�W
V Z \�=�?JZ[?JB Ia@-I Q4U-B�UFT$IF�b?HGI� GKJ P EL?�\�?DCY@&IKQSB(` P � f Ic?JZM� ì�Ò�ÒQ`z¿q �ÆQÍ d ��¿�»b��¾dÜ¹¤Ó§d§�¦�å

Ú ¦ÅÞ 5?Î�¢�ÒQ QÏ�£�àfÆÑÒON�àf¢�À�Á�àfÆCÜ�×�½Q_�àd¢�ÁsóVìõÌC dafÍ|½TÀ�¢�ÎÑÏ&À�Î�¢���Ò ½TÀ� d¢�àfa��ª½5¾Q¿|À���Á áu d¢
Ì!`bÆ5ÎQøTØ�å<� CYU)GA?]?AW-QSB(`-f UFT I���?7�P���!�Q" PR$'& VS(T* B Bbeb@&=U, ?AG.��BbQ4GA@&=9<;U&BXTJ?DCY?DB�GA?
/ N C]?]?DBbQ10V,�CY@2G323465 ù-17121Ñå

ÚköÓÞ<W¡àf¢�`b dÎÑ¿�Ï& �ÆTÀ�¢�`¼ã�Î�À� d¢�¿�Ü¡èDß��?�ä�&À�ô�½Q^ �¡¢� fû|��Ï&ÀXi ¿�Ì º ½ýÏ�»¼�ÓàfÆ���¢�å�Ö�Ï&ÄQ¿q_���ãë¿q`¼À��LÙÐå
ßTÀqÀ�Ã!ó÷ú�úÅÏ�Ä5¿�_���ã!å Æ��&À�ãÑ¿�Ò¹å �¢�aQúLãÑ¿�ÒQ_���ã!å Ï&a�`wúÅãÑàd¿���¿�¢�ÏÓúL»b`bãJ��ø5�ÓÏÓúÓ»¼á ¿X_äÏ&»b��àÅÆ���¢�Ò!å

Ú ÝÅÞ
� T¿q��ÆTãÑ»¼Î�Á àfÆÑÒX��ÎÑ¿|À���¢�ß� dÎ�À�Ü]×�èDß��s^=�Ó¿q`badÆ�àfÆJÒýÂoÁ�Ã�»b��Á���ÆTÀ�àÅÀ�`b dÆí fá�àªÌC dafÍ
½TÀ�¢�ÎÑÏ&À�Î�¢���Ò º `¼»b�ä½5¾Q¿|À���Á�Ø�å�* <�>Y,�CY@-B�fD@2GDIKQ4U&B�f U&B�<6U-Z \�e�Ia?DC P � f Ic?JZRf35 Ä� d»bÎ�Á��
¤X18Æ5Î�Á�ãJ��¢é¤dÜ º ��ãæ¤�§d§TùQå

Ú §ÅÞ"½Qàd¢�a���ÆTÀDàdÆÑÒ ��àd`¼ÆCÜd×|ÂoÁ�Ã�»b��Á���ÆTÀ�`¼Æ�a ��»b��àfÆÑ`¼Æ�a8`bÆZà8Ì!`bÆ5ÎQø*Ì! �afÍ|½TÀ�¢�ÎÑÏ&À�Î�¢���Ò º `b»¼�
¿�¾5¿qÀ���Á�Ø�åQßTÀqÀ�Ã!ókúdúL_�_�_éå Ï�¿�å _�`b¿�Ïfå ��ÒQÎ[úPZÑÏ�àf`bÆHúLÁ�¢�Ï&»b��àfÆCå ÃÑ¿�å

Úb¤X1ÅÞéè¶Î�`¼ÆJ¿|À�¢�àÑÜ èDß��
���ÆÑ��¢�`bÏ Ì º ½ ��»b��àdÆ���¢ ¿q`¼À�� Ö _���ã ¿q`¼À��LÙÐå
ßTÀqÀ�Ã!ó÷ú�úL_�_�_éå Ï&»zàf¢�£Q¿q �Æ!å �ÓÒQÎHúRZQÀ�Î�`bÆÑ¿qÀ�¢�àTúÅad��ÆJÏ&»b��àfÆCå

¥

Paper Submitted by:
Phillip Allen

University:
Clarkson University

Country:
USA

 Linux Challenge - 2001
Student Winners

 April 2002
Page 113 of 134

Other Challenge' Development Library
Threadpool: A reusable pool of general-purpose threads

Full text: http://www.clarkson.edu/~allenpd/threadpool/paper.html

Part 1

The current trend in computing technology is towards creating robust servers for client
server applications, such as scientific computing or the World Wide Web. Many server
applications are multithreaded; unfortunately, thread programming is difficult [3]. One
way to reduce the complexity of these programs is to use threads as a work crew [2].
Since servers typically handle a lot of traffic, a server could potentially spawn a large
number of threads on the fly. This can have a large overhead if it is preformed on short
lived operations. A better solution is to create a pool of threads before hand. Each time a
new client task enters the system, an idle thread will wakeup and perform the task. This
strategy is particularly effective because it amortizes the thread creation/destruction
overhead over many client tasks and reduces the instruction cost of starting the client
task, after the server initializes, to a mere procedure call. This method of thread
Organization is called a threadpool. The goal of our project is to create a generic
threadpool library for POSIX threads (pthreads).

We built the threadpool library to satisfy the following requirements for a threadpool are
as follows:

1. It must execute all dispatched functions exactly once.
2. When dispatch is called, the work to be done is placed into a queue and dispatch

returns. The only time that dispatch blocks is when the queue uses at least 64kB of
heap space and is full; in that case, the act of adding information to the queue will
block. This prevents the program from crashing due to lack of heap space.

3. There can be no deadlock conditions in the threadpool. Experiencing deadlock due to
threads is a potential occurrence but it should not be caused by a threadpool package
itself.

4. There should be no busy-wait loops in the threadpool. A busy-wait loop
has the tendency to be slow; in some cases, a two-phase wait is faster than blocking
[1]; however, programming around busy-wait loops is just as effective.

5. A simple, clean API. To vie the API please visit:
http://www.clarkson.edu/~allenpd/threadpool/API.html
The only additional requirement on the threadpool is that the programmer does not
attempt to execute threadpool functions through the dispatch of threadpool. Any such
function calls will immediately return with no code executed.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 114 of 134

Part 2

The threadpool is written in C and uses pthreads (POSIX threads) to handle threading; it
ports without change to many flavors of UNIX. There are essentially two parts. First is a
queue that is dynamic in size, instead of destroying a node after use with the free
command, it stores the unused nodes in a separate queue. This removes the overhead of
repeated malloc and free calls. The second part is the actual threadpool functions; with
the use of a mutex and three condition variables, there are no deadlock or busy-wait
conditions and the code behaves as we designed it to. The total amount of code, without
comments or debugging statements, is only 400 lines, half of which is the customized
queue.

To add a work crew to a single threaded server only takes three lines, which should
greatly ease the task of application developers.

Part 3
The threadpool was tested using a very basic server application; it accepted TCP/IP
requests, did an amount of work set at server creation, and then responded to the request.
The clients were simple applications that made a request to the server and then waited for
a response. If the server dropped a request, it would close down its connection and start a
new request. The network connecting the test machines is a switched Ethernet running at
a minimum of 100 Mbps; tests were conducted at night in order to minimize the effect of
other traffic. The time to send one packet across this connection was 2.230ms. Our tests
ranged from I/O intensive to computation intensive applications; in all cases, the addition
of threads to the threadpool showed superior performance to the monolithic
implementation. For a complete description of the machines used for testing and the
results of our tests, please visit:
http://www.clarkson.edu/~allenpd/threadpool/testing.html

Our threadpool provides a simple interface for an application writer to create
multithreaded applications. People tend to implement their own threadpools when they
need them. It is hard to get a threadpool right without extensive testing and proofs of
correctness. Therefore, we believe a solid, fully tested version of a threadpool is a
valuable asset to the open source community.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 115 of 134

References

1. Arpaci-Dusseau, Andrea C. Scheduling with Implicit Information in
Distributed Systems. ACM Transactions on Computer Systems, Vol. 19,
No 3, 2001,pp.283-331.

2. Birrell, Andrew D. An Introduction to Programming with Threads. Digital
SRC Research Report 35.

3. Ousterhout, John. Why Threads Are A Bad Idea (for most purposes)
Invited Talk at the 1996 USENIX Technical Conference (January 25, 1996).

 Linux Challenge - 2001
Student Winners

 April 2002
Page 116 of 134

Paper Submitted by:
Rimon Barr

(Rimon Barr <barr@cs.cornell.edu>)

University:
Cornell University

Country:
USA

 Linux Challenge - 2001
Student Winners

 April 2002
Page 117 of 134

rImap - Remote IMAP
On the Need for a Generic Open-Source Mail Replication Engine

November 27, 2001

Introduction: Motivation and Objective

The Linux platform and open-source [Perens 97] in general have revolutionized the
software industry by lowering many barriers to entry. One key advantage of this
movement is that individuals can make incremental contributions to an ever-increasing
base of software, rather than being forced to rewrite and reengineer entire systems from
scratch. While component technologies have fulfilled some of this promise, open-source
is proving to be far more effective. The need for a generic, open-source mail replication
engine is motivated in this context.

The appeal and value of the Linux platform increases as a function of the end-user
applications and functionality that it supports. Currently, there is a dire lack of Linux
desktop productivity applications, and many software development initiatives are
working furiously to address this issue. Mail processing is one such critical, end-user,
desktop function that has not been sufficiently addressed. Specifically, the majority of
mail processing applications does not support mail replication functionality: the ability to
synchronize mail replicas at multiple sites.

Mail replication is a necessity in many mail applications for numerous reasons [Demers
et al. 94]. Mail replication across servers provides fault-tolerance and availability in the
face of node and network failures. Replication can provide increased performance,
through load-balancing and latency-aware replica selection. Lastly, replication allows
users to process mail while offline and disconnected, which is often the foremost
criterion for selecting mail clients in an increasingly mobile world. Many fully featured
and popular mail programs, such as Pine, elm, Mutt, mail and various graphical clients,
do not support disconnected mail processing.

The purpose of this project is to create a flexible, generic mail replicator that can be
easily integrated into existing mail applications. In the remainder of this paper, I will
briefly discuss the design of the system, its implementation, and some interesting issues
and results I have accumulated from its everyday use for the past few months.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 118 of 134

System Design

The system is designed to synchronize messages among replicas. It is a generic, abstract
synchronization framework with concrete implementations for specific types of mail
stores and message formats. Implementations of the generic replica interface have been
created for the standard Unix mail file format and for IMAP compliant mail servers, and
new replica types can be added to the system with ease.

Synchronization can occur between any two kinds of replicas, as they are all treated
uniformly. Replicas IBM Linux Challenge Contest Entry Page 2 of 3 rImap � Remote
IMAP Rimon Barr are instantiated and parameterized via a URI registered with the
system. For example, an IMAP replica instance is specified as:
imap://[username[:password]@][server[:port][/path]

The generic synchronization engine assumes that each replica has a folder structure, with
messages in each folder. Replicas support opening and closing of folders, as well listing
folder contents, adding and deleting messages, locking, etc. The synchronizer can be
made to work with arbitrary objects, although it has been tailored to work with messages.
For example, the system emits useful message header information as they are processed,
shown in Figure 1. All that is required of an object is a unique object identifier and
serializability. Messages are serializable, by definition, and contain a globally unique
MessageID header [Crocker 82]. If one does not exist, a key is generated by the system.

INBOX: local - 12, cucs - 14, 1 xx, 3 <-
xx 27-Nov JavaWorld's Mic (4579) Nokia calls on Java developers deleted.
<- 27-Nov Linux Today (16K) YOUR LINUX TODAY NEWSLETTER FOR No copied.
<- 27-Nov Karen (1691) John Stewart waiting list copied.
<- 27-Nov Melissa (3495) Re: hi copied.
Drafts: local - 1, cucs - 2, 1 ->
-> 27-Nov Rimon Barr (2610) Re: IBM Linux Scholar Challenge copied.
Sent Items: local � 146, cucs - 146, 1 ->, 1 <-
-> 27-Nov Rimon (1411) Re: chat script for logging on to copied.
<- 27-Nov Rimon (2092) Re: by the way... copied.
** 26-Nov Rimon (99K) osr15 flagged.
Bin: local - 667, cucs � 669, 2 <-
<- 27-Nov Red Hat Network (3682) RHN Errata Alert: Updated wu-ftpd copied.
<- 27-Nov Elliott (1398) by the way... copied.

Figure 1: Sample run of rImap on personal mail folders

The synchronizer maintains the state of a folder pair to determine whether a difference
between two replicas is due to an insertion of a message into one replica or a deletion
from the other. The system then proceeds to perform the required message transfers and
deletions between the two folders that are out of synchronization, and it also takes care of
updating message flags and converting among message formats. The system provides

 Linux Challenge - 2001
Student Winners

 April 2002
Page 119 of 134

other features, such as unidirectional transfers and limiting message transfers by their
size, which are useful over slow modem links.

Lastly, the system can be integrated into an existing mail client or server program, or be
run standalone. The integrated version supports a simple API. The synchronizer need
only be provided with appropriate replica definitions, which can make up-calls into the
client or modify the message store directly. Command-line parameters and a short
configuration file drive the stand-alone version. A configuration file is used to define and
name replicas and group folders into named sets, which shortens the length of the
command-line. A better description of the stand-alone version, with detailed usage
instructions, is available in the attached HOWTO document [Barr 01].

System Implementation

The entire system is implemented in Python, and currently consists of 1500 lines of code.
This includes the command-line and configuration file processing, message parsing
routines, synchronization and locking, output formatting, and replica definitions for
interacting with both IMAP compatible servers and IBM Linux Challenge Contest Entry
Page 3 of 3 rImap � Remote IMAP Rimon Barr standard Unix mail files. Python was
chosen for rapid development and robustness. A quick perusal of the Pine source code
shows that merely Pine's Unix mail file parsing code is an order of magnitude greater in
number of lines of code than the entire system. Automatic memory allocation, string
processing and many programmer shortcuts and libraries provided within Python result in
a robust end product. Moreover, when written correctly, these benefits do not come at
the expense of application performance. For example, reading a large 25Mb mailbox file
is performed without a noticeable difference in performance, when compared to
analogous Pine and Netscape Messenger code written in C. The entire execution is
IO-bound running on a 200Mhz Pentium. In general, the choice of Python has greatly
assisted rapid development and increased program robustness, without sacrificing
application performance. Integration into existing mail applications is straightforward.
Loose integration can be achieved by spawning a process that runs the stand-alone
version of the system. A tighter integration is possible through Python's C, C++ and Java
language bindings. This only requires writing a specific replica implementation that
would interact with the mail client via client-specific up-calls. In addition to the
robustness gained through the use of a high-language, the system is written in a failsafe
manner. The system has been in daily use on my personal e-mail, and despite the
occasional specification incompatibility or coding error uncovered, I have yet to lose a
single message. It is now successfully being used by a small group of users in
configurations that I have not tested. For example, it was developed against a Microsoft
Exchange Server, and recently independently verified against Cyrus IMAPd. The system
has been tested primarily on Linux, but is used by some on Windows NT.

Conclusion and Future Work

 Linux Challenge - 2001
Student Winners

 April 2002
Page 120 of 134

Many ideas for future development have been included with the program source code.
Sub-projects include providing support for POP servers and support for synchronization
with popular Web-based e-mail systems via HTTP.

In this paper, I have briefly motivated the need for a generic, open-source mail replicator
and described its design and implementation. Based on feedback from users and from
personal experience, I believe that it represents a useful, practical contribution. The
project source code is fully functioning and is included with this contest entry.

References

[Barr 01] Rimon Barr, HOWTO: Offline Mailing Method using rImap,
http://www.cs.cornell.edu/barr/repository/rimap/rimap-offline-mailing.txt

[Crispin 96] Mark Crispin, RFC2060: Internet Message Access Protocol,
http://www.faqs.org/rfcs/rfc2060.html

[Crocker 82] David H. Crocker, RFC822: Standard for the Format of ARPA Internet
Text Messages, http://www.faqs.org/rfcs/rfc822.html.

[Demers et al. 94]
Alan Demers, Karin Petersen, Mike Spreitzer, Doug Terry, Marvin

Theimer and Brent Welch, The Bayou architecture: Support for
data sharing among mobile users. In Proceedings of the IEEE Workshop
on Mobile Computing Systems & Applications. Aug. 1994

[Perens 97] Bruce Perens, The Open Source Definition,
Http://opensource.org/docs/definition.html

 Linux Challenge - 2001
Student Winners

 April 2002
Page 121 of 134

Paper Submitted by:
Bryan Clark

University:
Clarkson University

Country:
USA

 Linux Challenge - 2001
Student Winners

 April 2002
Page 122 of 134

Kernel User Resource Tracking in the Linux Kernel

Part 1 - Describe the project and the objectives you are trying to accomplish.

User Resource Tracking (URT), the monitoring and administering of certain resources
such as number of processes and open files, is extremely important to keeping an
efficient work environment across a multi-user system.

This system if implemented correctly could provide a valuable resource to companies
looking to buy a single large server from where they can run all of their applications and
store all of their employee's data, however without limitation on resources a user could
bog down the system with their processes when it is server mission critical applications.
With a resource limiting system user memory, number of processes and number of open
files can be monitored and controlled to allow the server to provide it's main function
without interruption. Eventually this can become a group/user tracking system where the
company can create groups based on resource needs and users can then share only the
resources allocated to them. I think this would be exceptional in an academic or
workplace environment where you have different levels of users and different priorities
of functions, yet the organization desires centralized data.

Part 2 - Describe the methodology you used in working on you project. (This would include
any research you did, resources you used, team or open source community input, etc.)

I first realized the idea of this in March of 2001 when I was hacking my way through the
Linux kernel for an operating systems class project and I came across a comment by
Linus Torvalds in the <include/sched.h> file were he mentioned the possibility of a
complete user tracking system using the available structures that branch off the system
task structure. Then when I enrolled in a graduate level Advanced Operating Systems
course were we read and discuss many historical and current operating system research
papers we were given the assignment for a project of which we could also sign up into
the Linux Challenge.

Some of our class time has been spent discussing the high-level project ideas for the
challenge and we try to hash out the best method possible, also as a good measure we had
to research the concept of our idea everywhere possible to ensure it's originality. I took
on a partner for this project because I wanted a set of interaction tools and more input on
how to work the idea. My partner and I split up the work from the beginning and then
bounced ideas back and forth into the wee hours of the morning. The development
environment used a VMWare Workstation for Windows 2000 running Mandrake Linux
on which we ran the experimental kernels builds. VMWare gave us the ability to
experimentation without the risk of losing everything due to an error like limiting the
root's available processes to 3. Of course the VMWare wasn't run on a powerful machine

 Linux Challenge - 2001
Student Winners

 April 2002
Page 123 of 134

and inherently runs slow, so all our compiling was done on a six-processor Beowulf
cluster running Debian Linux.

Part 3 - Results you were able to achieve. (Strikethrough: summarize the following
information to help assist our judges.)

Our resource and limitations successfully implemented were for processes, file streams,
and sockets. Through the interface program provided by my partner you can change the
maximum resources for any user at anytime, also you can read the current resources
being used up. If a user were to try and run more processes than were available to him,
the call would be cancelled and an error message appears stated there are no more
processes left. Similar events happen for the files and sockets.

User Resource Tracking in the Linux Kernel

Abstract

Since the beginning of multi-user and time sharing operating systems like UNIX and it's
predecessors there has been a need to make system resources available to every user and
to organize this usage in the most efficient manner. User Resource Tracking (URT), the
monitoring and administering of certain resources such as number of processes and open
files, is extremely important to keeping an efficient work environment across a multi-user
system. An operating system kernel must track all of it's resources to ensure that it does
not exceed the bounds of the machine on which it is running. The URT uses a similar
technique to ensure that a user does not exceed the bounds of system resources that have
been set by their system administrator.

Introduction

User Resource Tracking (URT) is the monitoring and administering of certain resources
such as number of processes, open files and other critical resources like memory. To see
what the URT does first lets examine what has been done previously and how the system
builds and improve off of that. The Linux kernel already has resource limiting controls
that prevents the kernel from allocating more resources to any user or program than the
machine can physically handle. This is a system wide effect for all users, even the root
and this does not limit and specific user to a certain type or set of resources.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 124 of 134

PAM [1], a pluggable authentication module system, provides various resource
limitations for different users on a per login basis. An obvious flaw to this technique is
that your users can simply login in to more than one terminal and gain more resources
than the desired allocation. The major difference between the URT and PAM is that the
checks of the URT are within the kernel, which gives us a system wide tracking of users
instead of a shell-based limit.

In order to provide the most robust service for tracking I worked closely with Stephen
Evanchik, another IBM Linux Scholar Challenge registrant, who is building the
techniques of user tracking into a complete system. Steven's Resource Management
System runs on top of the URT and controls the limiting structure and adds a grouping
system for users. As a whole the URT aims to provide the most accurate tracking of user
resources, with that in place it easily adapts to limiting of these resources being tracked.
At present there are no resource tracking systems of this type that we are aware of.

Approach

The author feels that the best approach is the following:

! Maximize accuracy of accounting by following existing kernel methods and not
implementing new ones, which are subject to programmer error.

! Achieve the best system performance by not adding new structures that must be
maintained in kernel space, only adding new variables on existing structures.

! Provide the best compatibility by using existing structures, thus there are fewer
modifications to make to other functions and structures.

Design

Tracking control variables were placed into the user_struct structure for processes, files
and sockets. The control variables included were the maximum values allowed, as well
as the current value per user for each resource tracked. Limiting controls are then placed
at the various functions were allocations and removals occur according to the resource
being tracked. To maintain as close a relationship as possible with the current kernel
system resource control the same error values are returned upon error in the URT, as are
in these system checks. The same error codes were used so that the error messages
returned to the user would be the same as if the system resources were completely used
up to the point were the kernel could not allocate more resources of the specified type
requested.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 125 of 134

An important consideration and one discovered very quickly when the computer refused
to continue booting was that the root user must not be limited in any way, all of the
limitation controls have been wrapped with a user id check before checking for available
resource usage. As a statistical concern the tracking variables for the root user increment
and decrement and may be viewed to show how many resources the root user is
consuming, but there is no limitation because the root user is responsible for many
system services that must run without limits.

For default system values the kernel configurator was edited to allow changes to the
default values before kernel compile. To change the user limits and to read the current
usage during runtime a program can be used accesses the system call that changes the
values of the limits for any user as well reads the current resource usage values of any
users.

Current Status

Currently, the URT of processes, file streams and sockets is complete with tracking and
limiting both finished on a per user basis. Under development right now are two more
major resource issues of memory and CPU time. Some future concerns are the default
limiter; this should default to an infinite value so as not to limit users who do not require
this functionality.

1. Http://www.us.kernel.org/pub/linux/libs/pam/

 Linux Challenge - 2001
Student Winners

 April 2002
Page 126 of 134

Paper Submitted by:
Mike Schellhase

(mcs2@andrew.cmu.edu)

University:
Mellon University

Country:
USA

 Linux Challenge - 2001
Student Winners

 April 2002
Page 127 of 134

Software Testing
Rtest: Race-Free Software Testing

I. Project Description and Objectives

Complex software regression testing tools allow a developer to test a program against a
set of inputs. But what if the developer wants to send the program being tested signals
sent at a specific point in the execution of the process or synchronize some other event
during the process execution?

In fully automated software testing, a need often arises to do some synchronization with
the program you are trying to test to avoid race conditions. The testing program may
want to send signals or communicate via pipes with the program being tested and some
way of making sure that the program being tested is in a "ready" state may need to be
developed. The specific problem that led to this project involved an automated checking
of a shell for a computer systems class at Carnegie Mellon University. The grading was
done by creating 15 trace files and comparing the output of a student's shell to the output
of a reference implementation when fed the same trace file. The trace files included
executing basic shell commands, external programs, and also sending signals to the shell.
Specifically, the trace files tested the shell's handling of the SIGINT and SIGSTOP
Signals. However, a problem arose when testing signals via these trace files of when to
deliver the signal. If the shell receives the command for the program to execute but does
not yet fork off the new process or create the new job before the signal is sent, the signal
will not have its desired effect. A similar undesired effect can occur if the shell has
already forked off the new process and exec'd the new program. The new program may
already have finished and so a SIGINT signal would effectively be ignored.

Obviously, there are some inconsistencies in the order of events that a successful tester
must deal with. But how can this problem be avoided? How can we tell if the parent will
be scheduled before the child and so the new program will possibly miss receiving the
signal? Or how can we tell if the child will be scheduled first and possibly finish before
the signal is sent? We must find a way to control the states of the 2 processes so that we
can assure that the child will be in a "ready" state to receive the signal. This problem has
a much broader impact than testing student's implementation of a shell. Any program
being tested by regression testing is not being sufficiently tested if it does not test the
handling of signals and other asynchronous inputs to the program. Rtest is my attempt to
solve this problem by synchronizing the tester and the program being tested.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 128 of 134

II. Methodology

Rtest deals with the synchronization issues between the tester and the program being
tested (hereafter referred to as the client) by stopping the client in known states. To
accomplish this, rtest uses ptrace(), a low level system call that allows a parent process to
observe and control the execution of a child. First, a child process is forked off to run the
client program in. The child then indicates that it wants to be traced by calling ptrace.
By design, ptrace will cause the child process to stop when it reaches the exec call to
spawn the client. The server process begins by simply waiting for the child to stop with
waitpid.When this function returns, we will be in a synchronized state in which the parent
can start and stop the client and issue commands at the appropriate time. The parent can
now continue the child's execution of the client and supply it with input via pipes and
redirecting stdin and stdout.

To synchronize events while submitting inputs or sending signals, ptrace has the ability
to stop the client process at entry and exit to system calls. We can then decide what the
system call is and respond accordingly. After the inputs and signals have been delivered
to the child process, the outputs can be read via a pipe and the outputs compared to some
reference output. The project was developed on an Intel PIII 550 MHz machine running
Red Hat Linux 6.2 (Linux kernel 2.2.19). It required research of system calls,
specifically ptrace parameters and behaviors, and inter-process communication,
specifically pipes. A collection of web resources, man pages, and existing header files
was used to do this research.

III. Results of the Project

Rtest successfully uses ptrace to synchronize the execution of the client and server
processes. Because the client stops execution at a known point in the parent and can be
stopped at every subsequent system call (including forking off another child process), the
client can be controlled and ensured to be in a "ready" state at a given point in the servers
execution. Also, because of the flexible nature of the trace files, which provide input
To the client, rtest can test almost any command line program.

In conclusion, the ability to synchronize processes being tested can improve the
effectiveness of software testing, which will lead to higher quality software for the Linux
environment.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 129 of 134

Paper Submitted by:
Nick Pattengale

University:
New Mexico Institute of Mining

and Technology

Country:
USA

 Linux Challenge - 2001
Student Winners

 April 2002
Page 130 of 134

WindowManagers

1. Main Objectives

Interface improvements could distinguish Linux from all other Operating Systems.
While Linux kernel internals feature novel approaches to OS design & implementation,
Linux application development has followed a much more traditional path. The elegance
of the underlying OS is lost upon the user through application interfaces similar to
those running under any other OS. For example,there are as many as five variants of
"office" packages that are available for Linux. By playing "interface follow the leader,"
Linux application developers have repeatedly implemented common interface design
errors.

The field of HCI (Human Computer Interaction) has a healthy literature that has been
under-utilized by today's Linux community. It is the purpose of this study to show that by
implementing superior interface design principles, developers could make Linux stand
out from the pack as the premiere computing environment.

2. Methodology

There are a variety of techniques that can be used to improve interface efficiency. It
may help for the purposes of this study to break down improvements into two categories:
Operational Improvements & Functional Improvements.

Operational improvements, in the context of this study, consist of changes to the visual
computing environment. For example, using a technique called "indication"
significantly reduces the amount of unnecessary clicking found in traditional interfaces.
Indication is realized by keeping track of the location of the GID(Graphical Input
Device, e.g. the mouse) and visually distinguishing the element that would be selected if
the user were to click the GID.

Functional improvements, once again in the context of this study, are changes to methods
of data manipulation. For example, in the environment implemented for this study, a
spell-check can be invoked from anywhere that a spell-check command makes sense.
This is a substantial improvement over the typical Linux user environment where a
invoking a spell-check requires knowing the interface to a particular application.
Further illustrating improvement is that instead of having to learn a new spell-check
method for each different word-processing package, the means for realizing a spell-check
 is ALWAYS the same from ANYWHERE.

By developing software that strictly adheres to the improvements outlined in this paper,
the author expects to see quantitative gains in interface efficiency.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 131 of 134

3. Research

IDEAS (Interface Design Efficiency Assessment System) was written by the author of
this paper as a test-bed for interface improvements. IDEAS has as its central concept
the ActiveDesktop which, in the context of this study, can be thought of as a prototype
X11 WindowManager. The author feels that IDEAS is a demonstration of useful
techniques and has therefore licensed the software under the GNU GPL (General Public
License) and registered the project at OSDN (Open Source Developer Network)
SourceForge (http://ideasys.sourceforge.net). In implementation, IDEAS is a set of Java
classes that can be run either as a standalone application or as an applet from within a
web browser. Accordingly, as long as you have the Java2 Plug-in installed in your web
browser you are urged to view the ActiveDesktop Demo on the IDEAS website. The
ActiveDesktop demo will allow the user to try the technique for spell-checking
outlined in this paper.

In order to quantitatively measure interface efficiency improvements offered by the
ActiveDesktop, the author chose the Keystroke Level Model GOMS method.
KLM-GOMS is a scientifically tested method for predicting typical timings for
computing tasks requiring user interaction.

The KLM-GOMS analysis will serve the purpose of evaluating one improvement offered
by the ActiveDesktop. The ActiveDesktop, however, contains vastly improved
functionality that won't be quantitatively analyzed. Such improved functionality consist
of:

Operational Improvements:
(1) Indication, and
(2) Multiple Selection

Functional Improvements:
(1) Execution of 0th selection, and
(2) Transformation

These improvements are best described in context.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 132 of 134

Spell-checking a text selection from the ActiveDesktop requires two steps: Selecting the
text and Executing a "SpellCheck" command.

! Selecting the Text

Selecting the text to spell-check is identical to the typical "drag a selection box around
the text" procedure that we're all used to. Seems familiar, doesn't it? However there is
an improvement lurking in the wings. A new selection on the ActiveDesktop is treated
as the "0th selection." Contrary to current systems in which if you were to make a new
selection you would lose the original selection, the ActiveDesktop supports "Multiple
Selection." Multiple Selection simply means that when a selection is made, that selection
becomes the 0th selection, thereby making the last 0th selection now the1st selection.
The scheme can be thought of as a "SelectionStack." Multiple selection allows us to
execute the 0th selection as a command that operates on the 1st..nth selections.

! Executing a SpellCheck Command

Executing a SpellCheck command consists simply of typing the command "SpellCheck,"
selecting it, and pressing the EXECUTE key (F1 on the ActiveDesktop). Pressing the
EXECUTE button "executes" the 0th selection. Execution is done by IDEAS'
ExecutionEngine which looks up "SpellCheck" and recognizes it as a command that
equates to performing a spell-check on the 1st selection (the selected text, which was
bumped to the 1st selection as a result of selecting the text "SpellCheck"). Was that not
easy?

So what would have happened if the 1st selection wasn't text and was, say, a graphic?
This is where the functional improvement Transformation rears its convenient head.
Transformation occurs when an operand of a command isn't of the correct data type. In
the case of performing a "SpellCheck"command on a graphic, the TransformationEngine
would look to see if it contained a transformer for graphic->text. If such a transformer
existed (OCR), the transformation would be automatically invoked. So spell-checking a
graphic is just as easy as spell-checking text!

 Linux Challenge - 2001
Student Winners

 April 2002
Page 133 of 134

4. Results

As for a quantitative analysis typical of the numerous improvements offered by the
ActiveDesktop, a KLM-GOMS analysis of a spell-check on the ActiveDesktop looks like
this:

HPKPKPKPKHK - 5.1 seconds Whereas a typical Linux spell-check technique of boring
text is:

HPKPKMPKP - 6.75 seconds

That is a 25% improvement.

Now consider spell-checking a graphic. Using current methods would require a whole
new technique. Namely, it would require invoking a separate OCR application and
cutting and pasting the resultant text. Or maybe a spell-check interface is native to the
OCR package? The latter scenario would present yet another interface to learn.
Remember that by using the ActiveDesktop there is no difference in technique!

The previous paragraph sheds light on the substantial (other than simply "time-saving")
improvements offered by the scenario stated in this paper. Consider the execution/
transformation engine as a uniform approach to data manipulation. Such a framework
eliminates the need to learn application-specific features. By making the procedure for
using computing as habitual as possible, the user focus is shifted from learning how to
use a program to actually doing productive work. It is the author's conjecture that such
improvements could make the Linux windowed environment stand out as the most
productive and least error-prone environment available. It should be noted in closing that
the majority of the incredible software base provided to (and by) the Linux community
would not be lost in this proposed situation, as effort would only be needed to wrap
current functionality with the execution/transformation framework.

 Linux Challenge - 2001
Student Winners

 April 2002
Page 134 of 134

