
Sep-23-02 CSE 542: Operating Systems 1

Outline

• Chapter 11: File System Interface

• Chapter 12: File System Implementation

• File System Trace Analysis
– This project started out as a OS course project and ended

in SOSP!!

Sep-23-02 CSE 542: Operating Systems 2

File system interface

• File attributes
– Name:
– Type: Explicit or inferred
– Location:
– Size:
– Protection:
– Time, date, user identification

• Operations: open, close, read, write, seek, append,
delete, rename …

• Access: sequential, random, structured (indexed)
• Directory: Single, Two-level, Tree-structure, Acyclic
• Remote file systems: NFS, AFS, …

Sep-23-02 CSE 542: Operating Systems 3

Consistency Semantics

• UFS: Writes to open file are visible immediately to
other users that have this file open at the same time

• AFS: Writes to an open file by a user are not visible
immediately to other users that have the same file
open simultaneously

• Semantics depend on the cost of providing
consistency vs scalability

Sep-23-02 CSE 542: Operating Systems 4

Protection

• Read, Write, Execute, Append, Delete, List etc using
“owner, group, other” UNIX model or Access control
lists (ACL) of NT, AFS

-rw-rw---- 1 surendar mail 7384093 Sep 12 02:15 /var/mail/surendar

ACL:

Access list for . is

Normal rights:

 system:administrators rlidwka

 system:anyuser l

 surendar rlidwka

Sep-23-02 CSE 542: Operating Systems 5

File system implementation

• Virtual File Systems - easily change underlying
storage mechanisms to local or remote

• Directory Implementation: Linear list, Hash table

• Allocation: Contigous (fragmentation), linked
allocation (FAT), Indexed Allocation (single level,
multilevel)

• Free space management: Bit vector, Linked list,
Grouping, Counting

• Recovery and consistency checking

Sep-23-02 CSE 542: Operating Systems 6

Backups

• Backup and restore: Towers of Hanoi style levels
– Full+Incremental backups
– Level 0 - full
– level n takes all changes since last, lower numbered level
– E.g. 0, 5, 6, 3, 5, 6
– Full, 5-0, 6-5, 3-0, 5-3, 6-5

• Log structured file system
– Provide transactional guarantees for critical meta-data

• Pathname translation:
– Multilevel directories in order from the root
– Caching to improve performance
– /usr/local/bin/ls would be /, /usr, /usr/local, /usr/local/bin ..

Sep-23-02 CSE 542: Operating Systems 7

How did you implement your file system:

• Directory implementation?

• Allocation?

• Free list?

• Recovery?

Sep-23-02 CSE 542: Operating Systems 8

Trace driven analysis of the UNIX file system

• Rather old, but seminal. Influenced much of file
system design for a long time

• Studies like these are extremely important to
understand how typical users are using a file system
so that you can tune for performance

• As you will see in HWP2, not all workloads will
benefit from your disk scheduling algorithms

Sep-23-02 CSE 542: Operating Systems 9

• The key is to trace the “typical user population”.
– Academics do not have access to commerical work loads

– Chicken and Egg syndrome: Users perform certain tasks
because current systems perform poorly.

• E.g. users may backup their work into a separate file
every so often because of poor consistency
guarantees.

• UNIX vi editor saves files by deleting old file, creating a
new file with the same name, writing all the data and
then closing. If the system crashes after creating and
write, before close, data is left in buffers which are lost,
leading to a 0 byte file. It happened a lot and so
programs create backup files often.

Sep-23-02 CSE 542: Operating Systems 10

Important conclusions

• Most files are small; whole file transfer and open for short
intervals. Most files are short lived. Caching really works.

• UNIX used files as intermediate data transfer mechanisms:
– E.g. compiler

• Preprocessor reads .c file -> .i file

• CC1 reads .i -> .asm file and deletes .i file

• Assembler reads .asm -> .o file and deletes .asm file

• Linker reads .o -> executable and deletes .o file

• One solution: Make /tmp a in-memory file system

df /tmp

Filesystem 1k-blocks Used Available Use% Mounted on

swap 1274544 1776 1272768 1% /tmp

Sep-23-02 CSE 542: Operating Systems 11

Most files are read sequentially

• UNIX provides no support for structured files

• Applications that provide structured access (data
bases) use raw file interface and by-pass operating
systems

• Solution:
– Read-ahead to improve performance

Sep-23-02 CSE 542: Operating Systems 12

Most file accesses are to the same directory

• UNIX has a hierarchical file system structure

• Typical academic users compile, word process from
one directory and so all accesses are to a single
directory

• File systems such as Coda, AFS have notions of
volumes, cells that capture this

• Does this apply to Windows?

Sep-23-02 CSE 542: Operating Systems 13

Most files are small

• On a departmental machine with 8 MB of main
memory, what else do you expect

• Is it true now with our Netscape, xemacs, IE, Power
point etc?

• Relatively, it may still be true. On a 60 GB hard disk,
1 MB file may be “small”

