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Outline

• Chapter 7: Process Synchronization

• Chapter 8: Deadlocks

• Eraser by Savage et al.

• Project milestone 1: Tuesday

Sep-5-02 CSE 542: Operating Systems 2

Process Synchronization

• Cooperating processes (threads) sharing data can
experience race condition
– Outcome depends on the particular order of execution
– Hard to debug; may never occur during normal runs

Register1 = counter            Register2 = counter
Register1 = Register1 + 1  Register2 = Register2 - 1
counter = Register1            counter = Register2

• Depending on the order, the final value can be off by
one
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Critical Section

• Must satisfy the following requirements:
– Mutual Exclusion: Only one process should execute in

critical section

– Progress:

– Bounded Wait

• Remember that synchronization techniques
themselves do not guarantee any particular
execution order
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Approaches

• Software based
flag[i] = true;
turn = j

while (flag[j] && turn == j);

…..

flag[i] = false;

– Bakery algorithm for multi-process solution

• Hardware assistance
– Disable interrupts while accessing shared variables

• Works for uniprocessor machines

– TestAndSet and Swap atomic instruction

• Spin lock or reschedule processes
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Semaphore

• Wait (or P)
– Decrement semaphore if > 0, else wait

• Signal (or V)
– Increment semaphore

• Spinlocks  - CPU actively waits wasting CPU
resources. One optimization is to schedule the
process to sleep and have the Signal wake the
process. Higher overhead
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Deadlocks and Starvation

• Starvation or indefinite blocking
– “Fairness” issue

• Indefinite wait - deadlock
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Classical synchronization problems

• Bounded buffer problem
– Producer, consumer problem

– Can solve using semaphores

– E.g. buffer for disk operation in your file system

• Reader-Writers problem
– Many reader, single writer

– E.g. your file system home work
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Dining Philosopher problem

• Each process thinks for random intervals, picks up
both forks and eats for random interval. Cannot eat
with one fork
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Monitors

• Higher level language construct

• Implicitly locks an entire function
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Database terminology

• Atomic transaction
– A sequence of operation either “all” happer or none at all

– Either “committed” or “aborted”

– If aborted, transaction is rolled back

– Log based recovery where each operation is logged. On
failure, the log is played back in reverse

• Redo log

• Undo log

– Shared or exclusive

– Growing and shrinking phase

• Serializable atomic transactions
– More later
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Deadlocks

• Mutual Exclusion
• Hold and wait
• No preemption
• Circular wait

• Deadlock avoidance protocols
– Ensure that the above condition cannot happen

simultaneously
– Detection and recovery
– Laissez-faire - typical OS’s assume deadlocks are rare,

and detection and avoidance expensive
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Deadlock prevention

• Mutual Exclusion
– Some resources are not mutual - read sharing

• Hold and Wait
– Whenever a process requests new resource, it does not

hold other resources
• All resources are requester a priori

• No preemption
• Circular Wait

– Always request resources in increasing order

• Bankers algorithm: Don’t give out resources unless
you can satisfy all outstanding requests

• Avoiding deadlocks can lead to low utilization
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Recovery

• Terminate process
– Abort all deadlocked processes

– Abort one at a time till cycle is eliminated

• Selecting the victim: Number of resources held by
the process

• Rollback transactions:

• Starvation:
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Eraser

• Tool to dynamically detect possibility of race conditions in
lock based multithreaded programs

• Key Idea: For all shared variables, for all locks in the system;
check to make sure that each shared variable is covered by
the appropriate number of locks
– We don’t know what variables are associated with what locks

– Some race conditions are benign

• Initialization

• Read shared

• Read-write locks

• Binary code rewrite to insert hooks

• Significant overhead: 20 to 30 times slower. Since timing is
critical to threads programs, this could be an issue


