
CSE 542/498J: Operating Systems Thursday, September 5, 2002

1

Sep-5-02 CSE 542: Operating Systems 1

Outline

• Chapter 7: Process Synchronization

• Chapter 8: Deadlocks

• Eraser by Savage et al.

• Project milestone 1: Tuesday

Sep-5-02 CSE 542: Operating Systems 2

Process Synchronization

• Cooperating processes (threads) sharing data can
experience race condition
– Outcome depends on the particular order of execution
– Hard to debug; may never occur during normal runs

Register1 = counter Register2 = counter
Register1 = Register1 + 1 Register2 = Register2 - 1
counter = Register1 counter = Register2

• Depending on the order, the final value can be off by
one

Sep-5-02 CSE 542: Operating Systems 3

Critical Section

• Must satisfy the following requirements:
– Mutual Exclusion: Only one process should execute in

critical section

– Progress:

– Bounded Wait

• Remember that synchronization techniques
themselves do not guarantee any particular
execution order

Sep-5-02 CSE 542: Operating Systems 4

Approaches

• Software based
flag[i] = true;
turn = j

while (flag[j] && turn == j);

…..

flag[i] = false;

– Bakery algorithm for multi-process solution

• Hardware assistance
– Disable interrupts while accessing shared variables

• Works for uniprocessor machines

– TestAndSet and Swap atomic instruction

• Spin lock or reschedule processes

Sep-5-02 CSE 542: Operating Systems 5

Semaphore

• Wait (or P)
– Decrement semaphore if > 0, else wait

• Signal (or V)
– Increment semaphore

• Spinlocks - CPU actively waits wasting CPU
resources. One optimization is to schedule the
process to sleep and have the Signal wake the
process. Higher overhead

Sep-5-02 CSE 542: Operating Systems 6

Deadlocks and Starvation

• Starvation or indefinite blocking
– “Fairness” issue

• Indefinite wait - deadlock

CSE 542/498J: Operating Systems Thursday, September 5, 2002

2

Sep-5-02 CSE 542: Operating Systems 7

Classical synchronization problems

• Bounded buffer problem
– Producer, consumer problem

– Can solve using semaphores

– E.g. buffer for disk operation in your file system

• Reader-Writers problem
– Many reader, single writer

– E.g. your file system home work

Sep-5-02 CSE 542: Operating Systems 8

Dining Philosopher problem

• Each process thinks for random intervals, picks up
both forks and eats for random interval. Cannot eat
with one fork

Sep-5-02 CSE 542: Operating Systems 9

Monitors

• Higher level language construct

• Implicitly locks an entire function

Sep-5-02 CSE 542: Operating Systems 10

Database terminology

• Atomic transaction
– A sequence of operation either “all” happer or none at all

– Either “committed” or “aborted”

– If aborted, transaction is rolled back

– Log based recovery where each operation is logged. On
failure, the log is played back in reverse

• Redo log

• Undo log

– Shared or exclusive

– Growing and shrinking phase

• Serializable atomic transactions
– More later

Sep-5-02 CSE 542: Operating Systems 11

Deadlocks

• Mutual Exclusion
• Hold and wait
• No preemption
• Circular wait

• Deadlock avoidance protocols
– Ensure that the above condition cannot happen

simultaneously
– Detection and recovery
– Laissez-faire - typical OS’s assume deadlocks are rare,

and detection and avoidance expensive

Sep-5-02 CSE 542: Operating Systems 12

Deadlock prevention

• Mutual Exclusion
– Some resources are not mutual - read sharing

• Hold and Wait
– Whenever a process requests new resource, it does not

hold other resources
• All resources are requester a priori

• No preemption
• Circular Wait

– Always request resources in increasing order

• Bankers algorithm: Don’t give out resources unless
you can satisfy all outstanding requests

• Avoiding deadlocks can lead to low utilization

CSE 542/498J: Operating Systems Thursday, September 5, 2002

3

Sep-5-02 CSE 542: Operating Systems 13

Recovery

• Terminate process
– Abort all deadlocked processes

– Abort one at a time till cycle is eliminated

• Selecting the victim: Number of resources held by
the process

• Rollback transactions:

• Starvation:

Sep-5-02 CSE 542: Operating Systems 14

Eraser

• Tool to dynamically detect possibility of race conditions in
lock based multithreaded programs

• Key Idea: For all shared variables, for all locks in the system;
check to make sure that each shared variable is covered by
the appropriate number of locks
– We don’t know what variables are associated with what locks

– Some race conditions are benign

• Initialization

• Read shared

• Read-write locks

• Binary code rewrite to insert hooks

• Significant overhead: 20 to 30 times slower. Since timing is
critical to threads programs, this could be an issue

