

Operating Systems · "Fair" allocator of resources - Fairness depends on the system

- Single user Interactive performance
- Multi user improve utilization of costly resources
- Real time hard real time tasks
- Mobile device energy consumption
- · Abstract lower level details from user
 - · File systems vs disks
 - · Windowing abstractions vs frame buffers
 - Common functionality across various hardware platforms
 - Should allow users to circumvent abstractions for performance

Sep-5-02

CSE 542: Operating Systems

Historical evolution

- Main frames (\$\$\$\$):
 - Batch processing system
 - · Machine was mostly idle waiting for I/O devices
 - Very little memory (a few KB)
 - Multiprogramming
 - Many jobs resident at the same time
- · Time-sharing systems
 - · Provides interactive
 - Virtual memory
- Desktops
 - · Interactive performance critical
- · PDAs, SMPs, Distributed, Clustered, Real time, P2P

Sep-5-02

CSE 542: Operating Systems

Structure

- · Interrupt driven
 - Software generated interrupts via system calls
 - Hardware interrupts
 - · Synchronous and asynchronous I/O
 - · Coordinate direct memory access (DMA)
- · Storage hierarchy
 - CPU Cache -> memory -> disks -> tape
 - As technology changes some hierarchies have less
 - Cheaper to buy more memory than to buy extra swap
- Caching improves performance
 - Coherency and consistency

Structure

- Protection
 - Prevent users from corrupting their own data, other's data or crash the machine
 - Desired protection different for single user vs multi user
 - Supervisor mode and user mode to achieve protection
 - Memory protection using hardware
 - CPU protection using context switch

- · Process management
 - Creating processes, synchronization, deadlocks etc
- Main memory management
 - Allocation and deallocation
- · File management
 - Files, directories
- I/O system
 - Device drivers
- Networking
 - Communication abstractions
- Protection
- · Command-Interpreter system

Sep-5-02

System structure

- · Simple structure
 - MS Dos, PalmOS
- · Layered approach
 - OS/2
- Microkernel
 - Design a simple efficient core
 - Build services on top of this abstraction
 - Mach (basis for Mac OS X)
- · Virtual machine
 - IBM VM/CMS, Java

Application Interface

- Unstructured
 - MS Dos
- · Event driven
- PalmOS
- · File system based
 - UNIX, Plan 9
- · Object oriented - Hydra, OPAL
- Distributed OS
- Amoeba
- Real time
- QNX
- SASOS - OPAL

Sep-5-02

Discussion

- We will mostly discuss general purpose operating systems and their abstractions
- · We would not focus on special purpose operating systems in microwaves, VCRs, Tivos etc.