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Abstract

Transcoding is becoming a preferred technique to tailor
multimedia objects for delivery across variable network
bandwidth and for storage and display on the destination
device. This paper presents techniques to quantify the
quality-versus-size tradeoff characteristics for transcod-
ing JPEG images. We analyze the characteristics of im-
ages available in typical Web sites and explore how we
can perform informed transcoding using the JPEG com-
pression metric. We present the effects of this transcod-
ing on the image storage size and image information
quality. We also present ways of predicting the computa-
tional cost as well as potential space benefits achieved by
the transcoding. These results are useful in any system
that uses transcoding to reduce access latencies, increase
effective storage space as well as reduce access costs.

1 Introduction

The advent of inexpensive hardware such as powerful
personal computers, digital cameras, scanners and other
easy-to-use technologies is making it easier for the av-
erage user to dabble in multimedia. The phenomenal
growth of Internet technologies such as the Web and
electronic mail allows users to disseminate and share
these multimedia objects. By some estimates [19], about
77% of the data bytes accessed in the web are from mul-
timedia objects such as images, audio and video clips.
Of these, 67% of the data are transferred for images.
While this ability of users to share multimedia objects
makes the Internet more valuable to consumers, the un-
derlying capabilities of the system are not always able to
keep up with this shifting usage.

Users access these multimedia objects from a wide vari-
ety of devices with different resource constraints. Users
are not only accessing the rich multimedia objects from
traditional desktops that are better able to render these
objects, but they are also using mobile devices such as

a palmtops and laptops as well as newer devices such as
webtops and navigation systems that are resource con-
strained in terms of the processing, storage and display
capabilities. The network capabilities used in access-
ing these multimedia objects vary widely from wired
networks such as high speed LANs, ISDN, DSL, cable
and telephone modems, as well as wireless technologies
such as cellular, CDPD, Ricochet and GSM networks.
Depending on the technology used, the networks can be
slow, unreliable and expensive.

In such an environment of varying network, storage and
display capabilities, one size does not fit all. Consumers
using expensive networks want to download multimedia
images for the lowest possible cost. Consumers using
high speed networks and high quality displays want to
view the multimedia images at the highest quality.

In such an operating environment, transcoding can be
used to serve the same multimedia object at different
quality levels to the different users. Transcoding is a
transformation that converts a multimedia object from
one form to another, frequently trading off object fi-
delity for size. By their very nature, multimedia objects
are amenable to soft access where the user is willing to
compromise object fidelity for faster access. From the
server’s perspective, transcoding may be employed in
an attempt to achieve greater scalability, as exemplified
by AOL’s across-the-board transcoding of all requested
JPEG and GIF images [1].

Transcoding of multimedia objects can be performed in
any of the following scenarios:

static environment where the information provider
transcodes the object to a variety of formats (e.g.,
thumbnails along with full scale images) so that the
consumer can download the appropriate form for
the current operating environment.

streamed environmentwhere the network infrastruc-
ture (e.g., a network proxy) can transcode the ob-
jects on the fly to compensate for network latencies.



Previous work by [19, 8, 11] has used transcoding
in this fashion.

store and forward environment where the system can
transcode the objects to a smaller size to increase
the effective size of the local image storage space.
Users of a digital camera may transcode a previous
picture to a lower quality version to create space for
a new picture.

For transcoding to be useful, we need to quantify the
loss in information so that an informed decision can be
made on choosing the aggressiveness of transcoding. We
need to understand the computational costs and storage
benefits in order to decide if a particular transcoding is
worth the effort. For example, without such understand-
ing, systems that have used JPEG Quality Factor as a
transcoding metric typically transcoded the images to a
drastically lower JPEG Quality Factor.

Our work addresses the problem of how to characterize
the quality-size tradeoffs involved in transcoding JPEG
images so that the effectiveness of a particular level of
transcoding can be predicted efficiently. This implies
several subproblems.

The first problem is to more precisely define what we
mean by an “effective transcoding”. Thus we introduce
the notion of “quality aware transcoding” that is meant
to capture a direct and measurable relationship between
reduction in perceived image quality and savings in ob-
ject size. In order to measure whether we achieve that
goal for a particular image and a particular transforma-
tion, we need to be able to quantify the reduction in
quality caused by the operation. This requires that we
have a metric that corresponds, in some sense, to the
user’s perception of quality and that we can consistently
measure the starting and ending quality levels in order
to determine the loss. We analyze the use of the JPEG
compression metric for that purpose. The size reduction
component is straight-forward.

Next we must determine the computational cost required
to perform the transcoding. Thus, we ask whether the
transcoding is easy to compute and whether it can be
streamed.

Finally, it is highly desirable to easily predict the out-
come of a possible transcoding operation in terms of
the size reductions, quality lost, and computation cost
to determine if it is worth the effort for a particular case.
Since transcoding may not provide space benefits for all
images, we need to analyze if we can predict whether a
particular transcoding will provide space benefits for the

Step Compression Step Decompression
1 Convert ColorSpace 5 Convert Colorspace
2 Downsample 4 Upsample
3 Forward DCT 3 Inverse DCT
4 Quantize 2 De-Quantize
5 Entropy Encode 1 Entropy Decode

Table 1: JPEG Compression and Decompression

particular image. Thus we explore prediction algorithms
that can estimate those outcomes. For our study, we ana-
lyze a number of JPEG images available from a number
of Internet Web sites. This establishes how our methods
apply to typical workloads (of JPEG images). Similar
work has to be undertaken for other image, audio and
video multimedia types.

In this paper, we show that, for a transcoding that
changes the JPEG compression metric (referred to as
the JPEG Quality Factor), the change in JPEG Quality
Factor directly corresponds to the information quality
lost. To measure this change, we describe an algorithm
to compute the Independent JPEG Group’s (IJG) [15]
equivalent of the JPEG Quality Factor of any JPEG im-
age. To understand the overhead involved in performing
a transcoding, we develop a predictor that predicts the
computational overhead with a high degree of accuracy.
We also develop a predictor for predicting if an image
will transcode efficiently. We define transcoding effi-
ciency of an transcoding algorithm by the ability to lose
more in storage space for a particular loss in information
quality. We show that we can predict efficient images at
a significantly better rate than the base case. We validate
these results with a number of JPEG images.

The results from this paper were utilized in a compan-
ion paper [4] that describes the utility of quality aware
transcoding for serving multimedia objects to mobile
clients.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the JPEG compression metric and how
it can be computed for a given JFIF image. Section 3
describes the workload used for evaluating our transcod-
ing technique. Results of transcoding the images for this
workload are presented in Section 4. Section 5 discusses
related work in the area of transcoding and image quality
metrics and Section 6 summarizes the work.

2 JPEG Compression Metric

JPEG [20] is the Joint Photographic Experts Group lossy
compression scheme for still images. JFIF [10] is the



JPEG File Interchange Format used for exchanging im-
age files compressed using JPEG compression. JPEG
compression is based on psycho-visual studies of human
perception. To convert to a smaller file size, this type of
compression drops the least-noticeable picture informa-
tion. Human visual system response is dependent on the
spatial frequency. JPEG is a lossy image compression
algorithm that uses Discrete Cosine Transform (DCT).
DCT provides a good approximation to allow one to de-
compose an image into a set of waveforms, each with
a particular spatial frequency. This allows us to succes-
sively drop frequency components that are imperceptible
to the human eye.

The different steps in compressing and decompressing
an image using JPEG are outlined in Table 1. To com-
press an image, the color space of the image is first
transformed to the YCbCr [2] color space, followed by
any smoothing operations, followed by Minimum Code
Unit (MCU) assembly and forward DCT computation,
followed by quantization and entropy encoding. Since
the human eye is less sensitive to chrominance values
than to luminance values, different color components
can be downsampled differently: Cb and Cr components
are usually downsampled by a 2x1 factor, while the Y
component is scaled using a 1x1 factor. Decompression
process essentially reverses these steps: entropy decod-
ing is performed, followed by dequantization and inverse
DCT, followed by upscaling and color space conversion
to get back to an RGB image.

In JPEG, the compression ratio of the output image is
controlled solely by the quantization tables used in step
4. An all-1’s quantizer achieves a compression ratio that
is comparable to a lossless compression algorithm. The
JPEG specification [3] section K.1, provides standard lu-
minance and chrominance quantization tables that pro-
vide good results for a variety of images. The standard
quantization tables can be scaled to vary the compres-
sion ratios. Most JPEG compressors allow the user to
specify a range of values for the scaling factor, by spec-
ifying a compression metric called Quality Factor. This
Quality Factor is an artifact of JPEG compression. Dif-
ferent software implementations use different values for
Quality Factor. Quality Factors are not standardized
across JPEG implementations. The IJG Library [15]
uses a 0-100 scale, while Apple formerly used a scale
running from 0 to 4. Recent Apple software uses an 0-
100 scale that is different from the IJG scale. Paint Shop
Pro’s scale uses a 100-0 scale, where lower numbers im-
ply higher quality. Adobe Photoshop gives discretemax-
imum/ high/ medium/ low choices.

The JPEG Quality Factor can form the basis for a

transcoding that progressively reduces the Quality Fac-
tor of an image to achieve better compression ra-
tios. A transcoding that uses JPEG Quality Factor, can
transcode an image, either to an absolute Quality Factor
value or to a percentage of the original quality.

2.1 Initial Quality Factor

In order to determine if the JPEG compression metric
forms an effective transcoding, we need the ability to
measure the JPEG Quality Factor of an image. With-
out the ability to measure the initial Quality Factor used
to produce an image, the transcoding algorithm might
transcode an image with a low initial Quality Factor to
an apparently higher Quality Factor value by manipulat-
ing the quantization tables, even though such an oper-
ation does not increase the information quality of the
output transcoded image. The resulting output image
from such an operation is bigger than the original “lower
quality” image. For example, transcoding a JPEG image
of Quality Factor 20 and size 37 KB to a JPEG image
of Quality Factor 50 produces an image of size 42 KB.
Systems that have used JPEG compression metric as a
transcoding metric, such as [8, 11], have avoided this
problem of not knowing the initial JPEG Quality Factor
by transcoding the images to a sufficiently low quality
value, such as Q=5, so that they can transcode all im-
ages to a smaller size.

The quantization table that was used to compress an im-
age is stored in the JFIF header, but the JPEG Quality
Factor that was used to generate the quantization table is
not stored along with the image and hence the original
JPEG Quality Factor is lost. Different JPEG compres-
sors use different quantization tables. Since there is no
reliable way to recognize the software that produced a
given JPEG image, we develop a predictor to measure
the IJG equivalent of the JPEG Quality Factor of an im-
age.

By default, the IJG implementation uses the standard
quantization tables, computes the Scaling Factor(S)
from the Quality Factor(Q), and then uses the Scal-
ing Factor to scale the standard quantization tables
(stdQuantTbl). Finally it computes the quantization ta-
bles for the image (imgQuantTbl) as follows

S = (Q ≥ 50)?( 5000
Q ) : (200− 2Q)

imgQuantTbl[i] = stdQuantTbl[i]∗S+50
100

We reverse the steps used by IJG in computing the quan-
tization tables to compute the quality value as follows:
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(e.g. Adobe Photoshop)
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(e.g. IJG)
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Figure 1: Evaluating JPEG Predictor

S′ = imgQuantTbl[i]?100−50
stdQuantTbl[i]

Q′ = (S′ ≤ 100)?( 200−S′
2 ) : ( 5000

S′ )

The JPEG Quality Factor predictor function involves in-
teger computations on the quantization tables that intro-
duce integer rounding errors. Hence, even for images
produced by IJG’s software, the Quality Factors com-
puted can be off by a point or two.

To validate the correctness of our JPEG Quality predic-
tor, we first tested the predictor on images produced by
IJG software. Using IJG, we created a JPEG image with
a specified JPEG Quality Factor, and verified if our pre-
dictor could predict the correct Quality Factor that was
used. As expected, the results were accurate within a few
points; which is attributable to integer round-off errors.

Next, we tested the effectiveness in predicting the JPEG
Quality of images produced by Adobe Photoshop and
Paintshop Pro. We evaluated the effectiveness of our
predictor in two steps. The steps are illustrated in Figure
1. First we produced a JPEG image (I) from a reference
TIFF image using the target encoder (e.g. Photoshop).
We ran our predictor on the resulting JPEG image to esti-
mate its IJG-equivalent Quality Factor (Q). Then, in step
two, we produced another JPEG version of the reference
TIFF image (I’) but used the IJG software using a Qual-
ity Factor value such that the resulting image matches
the size of the JPEG image produced in Step one. Finally
we compared the predicted Quality Factor and the value
used in producing the IJG JPEG version. The values of
Q and Q’ should be identical for a successful predictor.

First we tested the effectiveness of our compressor for
images produced using Adobe Photoshop. We com-

pressed a reference TIFF image using the four quality
settings allowed by Photoshop. Our predictor estimated
the qualities for the four different Adobe settings to be
37, 62, 82 and 92 respectively. The sizes of the files
derived from Adobe’s software’s four compression set-
tings were similar to IJG compressed images of Quality
Factors 55, 74, 89 and 97 respectively.

Next, we tested the effectiveness of our predictor for im-
ages produced using Paint Shop Pro. We compressed a
reference TIFF image using Paint Shop for a range of
Quality values (Q’) between 10 through 90. Our predic-
tor estimated the Quality Factor values at a value equal
to (100 - Q’). The file sizes also corresponded to JPEG
Quality values of (100 - Q’). In fact, the file size val-
ues matched so perfectly, we suspect that Paint Shop
Pro internally uses IJG software, but chooses to invert
the meaning of IJG Quality Factor values.

Hence, our JPEG Quality Factor predictor closely pre-
dicts the JPEG Quality Factor for images compressed us-
ing IJG and Paint Shop Pro and underestimates the JPEG
Quality Factors for images compressed using Adobe
Photoshop. For our purposes, it is preferable to under
predict the image quality. Otherwise, applications might
try to transcode an image to a Quality Factor that is
lower than an over-estimated Quality Factor, but is in
fact higher than the correct Quality Factor of the im-
age (which would produce a JPEG image that is bigger
than the original un-transcoded image). Since we do not
know thereal Quality Factors, and since the values are
either under predicted or predicted accurately, the pre-
dictors’ performance is acceptable as a predictor of the
IJG equivalent of Quality Factor of the given JPEG im-
age.

2.2 Perceived Information Quality

When we transcode an image, we want to quantify the
loss in information as well as the space savings achieved.
To quantify the loss in information we need to measure
the image quality, asperceived by an observer. Then, we
need to address whether JPEG Quality Factor captures
perceived quality adequately.

The perceived information quality of an image depends
on a variety of factors such as the viewing distance, am-
bient light, the display characteristics, the image size,
the image background etc. Images can be objectively
measured usingdistortion metrics, which are functions
that find the difference between two images,fidelity met-
rics, which are functions (or series of functions) that
describe thevisibledifference between two images and



subjective measures such asquality metrics that are
numbers, derived from physical measurements, which
relate to perceptions of image quality.

Distortion metrics, such as tone, color, resolution, sharp-
ness and noise, describe a measurable change in an im-
age, although this change need not necessarily be vis-
ible. Distortion metrics do not take into account the
characteristics of either the output device or observer, al-
though some attempts have been made to include these
factors.

Fidelity metrics, such as the Visual Differences Predic-
tor (VDP), produce difference images that map percepti-
ble differences between two test images. While this ap-
proach is useful for diagnostic tasks, a single value rep-
resenting ‘quality’ is often more useful. Ahumada and
Null [13] note that the relationship between fidelity and
quality varies with the observer’s expectations of the in-
tended use for the image, a feature which is also depen-
dent on factors such as past experience. The subjective
assessment of quality also varies with the pictorial con-
tent of the test stimuli, even when image fidelity remains
constant.

In his Ph.D. thesis, Adrian Ford [7], tried a series of
image quality and color reproduction measures to quan-
tify the effects of lossy image compression on baseline
JPEG images using the IJG software. Objective mea-
surements such as tone reproduction, color reproduction
(CIE ∆E∗and Color Reproduction Index), resolution,
sharpness (MTF) and noise (Noise Power Spectra) along
with quality metrics, such as ‘Barten’s Square Root In-
tegral with Noise’ and ‘Töpfer and Jacobson’s Perceived
Information Capacity’ were used to evaluate the overall
image quality. The image quality metrics were imple-
mented with the aid of a published model for the hu-
man eye and a model of the display system based on
experimental measurements. Measured image quality
was compared with subjective quality assessments per-
formed under controlled conditions. He concluded that
JPEG compression metrics such as JPEG Quality Factor
outperformed other measures in predicting the quality of
an image.

Since the workload and assumptions of Adrian Ford’s
thesis closely matches the kinds of images available on
the internet, we adopt his conclusion that JPEG Qual-
ity Factor is a good representation of the subjective im-
age quality. Reduction in JPEG Quality Factor directly
translates to loss of image information quality.

3 Workload

The effectiveness of our study depends on the realism
of the JPEG images that are used to validate the results.
To better understand the qualities of the JPEG images
available on the web, we classify web sites into four dis-
tinct categories with respect to the site’s usage of JPEG
images. These categories are

News Site. News sites use images to reinforce some
news story. The images are secondary to the news
being delivered. Hence we expect the images
to be small and of low quality. For our exper-
iments, we used 6217 JPEG images downloaded
from Cnn.com [5].

Image Site.The sole purpose of online art gallery sites
is to deliver high quality images. For our exper-
iments, we used 4650 JPEG images downloaded
from Photo.net [9].

Commerce Site. The primary purpose of commerce
sites is to sell their wares. These sites would like
to deliver big, high quality images to promote their
merchandise without turning away users with high
access latencies. For our experiments, we used
1248 JPEG images downloaded from Starwars.com
[22].

ClipArt Site. JPEG encoding is optimized for realis-
tic full color images and is not especially appropri-
ate for compressing images with few colors such as
cartoons and line drawings. Still, such ill-advised
uses do exist in the Web. We use 485 JPEG images
from a image collection from Media Graphics [17],
which provides clipart collections that are intended
to be used by a Web site designer.

We plot the cumulative distribution of JPEG Quality, the
image size and image geometry in Figure 2. From Figure
2(a), we note that 60% of images in the CNN workload
have Quality Factor less than 60, while 80% of images
in Starwars workload have Quality Factor less than 60.
Most of the images in PhotoNet have Quality Factor of
77. From Figure 2(b), we note that most of the images in
CNN and Starwars workload have small image geome-
tries. Correspondingly, from 2(c), we note that images
in the CNN and Starwars occupy smaller file sizes, with
most of the images being less than 20KB. PhotoNet on
the other hand has a number of very big images that are
greater than 100KB. ClipArts consists of fairly big im-
ages with 25% of the images being over 50KB.
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Figure 2: Workload Characteristics

Workload
Reduced Image Quality

25%Q 50%Q 75%Q
Overall 3.2% 47.4% 66.1%
CNN 2.9% 40.2% 99.6%

PhotoNet 1.8% 66.3% 25.1%
ClipArt 2.3% 22.7% 53.6%
Starwars 6.8% 18.9% 56.9%

Table 2: % Efficient images for a given loss in image
quality

4 Results

4.1 Efficient, Quality Aware Transcoding

Once we quantify the loss in information, we can mea-
sure if the transcoding produces significant saving in
space for a corresponding loss in image information
quality.

We define transcoding efficiency of a transcoding oper-
ation by the ability to lose more in size for a particular
loss in information quality. For example, if an image
was transcoded to lose 50% of information quality, the
output image size should be less than 50% of the origi-
nal image for it to be an efficient transcoding. For some
applications, this restriction may be too restrictive and
these applications may relax the constraint to accept out-
put size of, say, 55% instead of 50%.

From Section 2.1, we note that our initial JPEG Qual-
ity Factor predictor under-estimates the Quality Factor
of images compressed using Adobe Photoshop. As a
consequence, the quality loss may be similarly under-
estimated which has the effect of allowing smaller size
reductions to be classified as efficient. This errs on the
side of capturingall efficient transcodings at the cost of
including some borderline inefficient ones.

In order to measure the overall efficiency of the
transcoding algorithm, we performed experiments on all
the images in our workloads. We measured the original
JPEG Quality Factor of the images using the algorithm
described earlier, reduced the image qualities to 75%,
50% and 25% of the original Quality Factor values, us-
ing fixed Huffman tables1, and then measured the result-
ing image sizes. The change in image size, from the
original image size, for a given reduction in image qual-

1It has been observed that using custom Huffman tables may yield better
compression. For the images in our workload, we empirically measured that, on
average, using custom tables produces images that are 11% smaller than using
fixed tables. However, this comes at a cost of consuming 32% more memory and
taking 56% more time to transcode. Our use of fixed tables means even more
savings are possible.
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ciency for all the images in the workloads

ity, is plotted as an cumulative distribution in Figure 3.
For a given reduction in quality, any change in file size
that is less than the change in quality (values to the left
of the vertical line representing the loss in quality) is an
efficient transcoding as the resulting file size is smaller
than the corresponding loss in quality. Any value to the
right is inefficient as the resulting file size is bigger than
the corresponding loss in quality.

From Figure 3, we can see that reducing the initial qual-
ity to 75%, 50% and 25% was efficient for 66.1%, 47.4%
and 3.2% of the images respectively. The results for the
different workloads, were tabulated in Table 2.

From Table 2, we can see that images reduce efficiently
for smaller drops in quality; a big drop in image quality
to 25% of original quality does not lead to an efficient
transcoding for most of the images. For images from
PhotoNet, only 25% of the images reduced efficiently
for a Quality Factor reduction to 75%, while 66% of the
images reduced efficiently for a Quality Factor reduction
to 50%.

In exploring this behavior, we discovered that images in
the PhotoNet collection were initially entropy encoded
using custom Huffman tables. Hence, for a small drop
in image quality, the relative space gain from transcod-
ing was offset by the increase in image size from using
(less optimal) standard Huffman tables. For a more sig-
nificant loss in the Quality Factor, the space gain from
transcoding offsets this increase in image size.
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4.2 Computation Cost

The next measure of the effectiveness of a transcod-
ing is an analysis of the computational cost involved
in performing a transcoding operation so that an intel-
ligent decision can be made about the applicability of
the transcoding for a particular operating environment.

The JPEG Quality Factor value of an image can be re-
duced without completely uncompressing the image (Ta-
ble 1), by first performing an entropy decoding, followed
by dequantization and requantization followed by en-
tropy encoding. The computational cost does not de-
pend on the quality of the image being transcoded, nor
on the quality value being used for transcoding the im-
age. Quantization and dequantization involve integer
multiplication and division operation on each DCT im-
age block, which can be collapsed into a single inte-
ger multiplication on each DCT image block. The basic
computational block is of the form

dst[i] = (src[i] ∗ reQuantizedScale)� scale (0 < i < 63)

For an image withi color components, and a size of
ni×mi blocks per color component, we need to perform∑
ini ∗mi ∗ 64 computations. For example, transcod-

ing a 480 × 480 full color image (with 3 color com-
ponents YCbCr) with no component scaling involves
60∗60∗3∗64 or 691200 computations. For a480×480
image with2 × 1 scaling for chrominance values, this
corresponds to(60 ∗ 60 + 60 ∗ 30 + 60 ∗ 30) ∗ 64
or 460800 computations. Transcoding a progressive
JPEG image requires expensive Huffman encoding for
re-compression as the default tables are not valid for pro-
gressive formats. Hence, for our experiments, we auto-
matically transcode progressive JPEG images to the sim-
pler sequential format.



The image component dimensions are available in the
JFIF headers and hence the number of basic computa-
tional blocks required to transcode an image can be com-
puted for the particular image. Since the time taken to
compute the basic computational block can be statically
determined for a particular computing device, we want
to validate that we can use the number of basic com-
putations as a measure of the computational cost for a
particular transcoding.

For our experiments, we used the IJG software, which
is not particularly optimized for the compression oper-
ation. We used a Pentium II 400MHz machine with
128MB memory and an Ultra Sparc II 300MHz ma-
chine with 512MB of memory, both running Solaris 2.6
for our experiments. Based on the basic computational
blocks described above, the time taken to transcode the
images from our workloads are plotted in Figure 4. We
observe that the number of basic computation blocks and
the time to transcode an image are linearly correlated.
The results indicate that the observed data fits the linear
equationtime = const∗ basicBlks (whereconst' 37,
for Pentium II andconst ' 105, for Ultra Sparc II).
The valuetime is measured in msecs andbasicBlks
are measured in millions of basic computational blocks.
The linear correlation coefficient(ρ) between the com-
putational blocks and the time taken to transcode was
0.99 for both the machines. The 95% confidence inter-
val, computed using standard deviation about regression,
was measured at 15.3 msecs for the Ultra Sparc II and
7.9 msecs for the Pentium Pro II. These confidence in-
tervals are quite adequate for most purposes.

Hence we conclude that the time required to perform a
image transcoding using the JPEG Quality metric can
be predicted accurately by computing the number of ba-
sic computational blocks using the image components
dimensions. The time taken to compute a basic compu-
tational block, which affects the coefficients of the linear
equation described above, can be computed statically for
a particular computing device.

4.3 Predictable Size Tradeoff

Another objective in using JPEG Quality Factor as a
transcoding algorithm is the ability to predict the output
size of an image for a particular transcoding.

Previous work by Han et al. [11] attempted to predict
the image size using the image pixel counts as a met-
ric. They transcoded sample images to JPEG Quality
Factor values of 5 and 50. For these transcodings, they
measured the linear correlation coefficient between the
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transcoded output JPEG image size and the number of
pixels in the image at 0.94 and 0.92 respectively. For
the images in our data set, we plotted (Figure 5) a scat-
ter plot of the input pixels vs. the output image size.
The data exhibits heteroscedasticity [14] of the variance,
wherein the variance of the output size is not the same
for all values of input pixels. The variance is higher for
images with higher input pixels. The studentized resid-
ual for transcoding images to a Quality Factor value of 5,
with the ithobservation deleted, were plotted as a scat-
ter plot in Figure 6. Similar results were observed for
transcoding images to Quality Factor value of 50. In or-
der to make inferences from the data sample using linear
statistical models, the plot should contain a horizontal
band of points with no hint of any systematic trend. The
residual values for our data, as seen in Figure 6, suggests
that the output size depends on multiple (unknown) pa-
rameters and not just on the input pixels. Hence the input
pixels cannot be used as a useful predictor of the output
image size for our set of images.

Intuitively, this makes sense as the type of input images
can vary from photographic images to clip arts to images



of random noise. Since JPEG encoding is optimized for
realistic images, random noise will not be encoded as
efficiently as a photographic image. There is no easy
heuristic to identify if an image is a photographic im-
age. It is unlikely that the exact output size of an image
for a particular transcoding would be predictable a priori
without an understanding of what the image represents.

Even though the ability to predict the exact output image
size would be valuable, for a transcoding to be useful, it
is usually sufficient to analyze if an image will transcode
efficiently. Hence, we try heuristics to predict if an im-
age will transcode efficiently.

To better understand what factors might affect the
transcoding efficiency, we need to understand the char-
acteristics of the JPEG entropy coding algorithm. Since
re-quantization only involves re-encoding of entropy pa-
rameters, DCT operations do not play a part in affect-
ing the efficiency of a transcoding that lowers the JPEG
Quality Factor.

JPEG baseline algorithm computes the entropy encoding
using Huffman encoding with a standard Huffman table.
The JPEG quantization step strives to increase the num-
ber of zeros in the image, starting with the least percep-
tible high frequency components. The default Huffman
table stores zero value using 2 bits. Since typical images
that are to be entropy encoded tend to be predominantly
zero, the JPEG algorithm employs three additional opti-
mization steps to improve the compression ratios.

1. The DC components are stored as a difference
value from the DC coefficient from the previous im-
age block, rather than by a straight Huffman code.

2. Sequences of zeros are encoded by a single byte
which contains the count of zeros in the upper four
bits with the lower four bits being zeros. For ex-
ample, a sequence of 16 zeros are stored using 8
bits, instead of 32 bits required by pure Huffman
encoding.

3. If the trailing entries in a image block are zeroes,
the JPEG algorithm stores an End of Block (EOB)
marker and avoids encoding those trailing zeros ex-
plicitly. Hence, if an image block had 60 trailing
zeros, they will be encoded using 0 bits, instead of
120 bits that would be required by a pure Huffman
encoding.

Empirically, we found that we only need to analyze the
luminance values of an image to predict its transcoding
efficiency. This makes sense, since human eyes are less

Prediction % for 75% 50% 25% Q= Q= Q=
Criteria Criteria Q Q Q 75 50 25

None 100 67 46 2 89 81 41

P = 0 21 57 37 1 89 78 44
P > 1 29 85 58 6 86 81 30
P > 3 15 97 82 8 87 81 27
P > 5 9 99 83 12 89 84 30
Q > 80 20 98 83 9 87 86 30
R < 10% 54 68 51 4 89 81 40
(Q > 80) or
(P > 3)

21 96 82 9 87 85 30

Table 3: % of Accurately Predicted Images (C%)
Prediction % for 75% 50% 25% Q= Q= Q=
Criteria Criteria Q Q Q 75 50 25

None 100 1 6 82 8 9 38

P = 0 21 0 2 18 2 2 8
P > 1 29 0 2 23 3 3 13
P > 3 15 0 0 12 2 2 6
P > 5 9 0 0 7 1 1 4
Q > 80 20 0 0 14 2 2 8
R < 10% 54 0 2 43 5 5 20
((Q > 80) or
(P > 3)

21 0 0 14 2 2 8

Table 4: % of Egregiously Mispredicted Images (E%)

sensitive to chrominance values; the default quantiza-
tion tables reduce the chrominance values to zeros faster.
Also, empirically, we found that images that typically
transcode efficiently tend to have higher coefficients for
the low frequency components. Since the high frequency
components are reduced quicker by the quantization ta-
bles, their contribution does not affect the final image
size. We also noticed that images of higher initial qual-
ity tended to transcode efficiently.

Taking these observations about JPEG images as well as
the Huffman optimizations into account, we hypothesize
that an image will transcode efficiently, if:

There are sufficiently many high magnitude low fre-
quency components in the luminance blocks of the
images. The alternative, which are images whose
magnitude of low frequency components are low,
will already have lost much of the quality repre-
sented in the low frequency components that are
most noticeable to the human eye and hence further
compression is inefficient.

We define low frequency factor (P) as the percent-
age of low frequency components in the luminance
blocks of an image that have coefficients whose ab-
solute value is over a certain threshold. The num-
ber of frequency components to analyze is a com-
promise between choosing predominantly low fre-
quency component images such as cartoons and
predominantly high frequency component images
such as detailed photographs. We experimentally
varied the number of low frequency components to
consider at 3, 5 and 7 (odd number of components



are required to maintain equal weighting for hori-
zontal and vertical frequency components) and the
magnitude thresholds to 64, 80, 96 and 128. We
found that the values of 80 for the threshold and
5 for the number of components reasonably cap-
tured our intuition. Hence, for our experiments, we
computed P as the percentage of frequency com-
ponents 1 through 5 (which translates to 1, 8, 16, 9
and 2 in the natural order) over all luminance blocks
that have coefficients with an absolute value greater
than 80.

There are sufficiently few luminance color blocks
within the image in which all of the highest fre-
quency components beyond some point have coef-
ficients that are all zero.Such images still present
adequate opportunity for further efficient compres-
sion.The alternative, which is an image with many
such blocks having zero coefficients for all of the
high frequency components, will already be effi-
ciently compressed using the JPEG Huffman opti-
mizations described earlier.

We define a high frequency factor metric (R) as the
percentage of luminance blocks within the image
which have zero coefficients forall of the highest
frequency components beyond a certain threshold.
The choice of the threshold is a compromise. We
tried zero-coefficient runs of the 48, 63, and 58
highest frequency components on test images. For
our study, we chose 58 (max−P or 63− 5) as the
threshold, in order to avoid counting coefficients
already captured by the low frequency factor (P),
described above. Hence, for our experiments, we
computed R as the percentage of luminance image
blocks which have zero coefficients for all of the 58
(or more) highest frequency components.

The image is of high initial quality.We consider im-
ages produced with a JPEG Quality Factor value
(Q) over 80 as high quality.

The parameters P and R can be computed easily by
traversing a JPEG image’s luminance DCT component
blocks once. P can be computed by accessing the first
few components in each DCT component block. Usu-
ally, these parameters can be computed as a by-product
of transcoding an image locally or while measuring the
initial JPEG Quality Factor of an image.

Using these parameters, we categorized the images and
measured the number of images that transcoded effi-
ciently in each category. For a particular criteria to be
useful in predicting if an image will transcode efficiently,
it needs to:

Apply to a significant percentage of images.For exam-
ple, it is undesirable to have a prediction algorithm
that makes predictions for only about 2% of the im-
ages. For our study, we analyze prediction criteria
that at least predict 10% of images in a workload.

Accurately predict at a higher percentage than the gen-
eral population.The percentage of images that are
predicted efficient should be better than the per-
centage of efficient images in the original work-
load. For example, if 25% of all the images
transcoded efficiently, we prefer a prediction that
categorizes the images such that 80% of the pre-
dicted images transcode efficiently over a criterion
that categorizes 30% of the efficient images.

Mis-predict egregiously inefficient images at a lower
percentage than the general population.We de-
fine a pathological image as an image that is bigger
than 125% in size than the loss in information qual-
ity. For example, if an image loses 50% Quality,
we categorize an image that is bigger than 125% of
50%, i.e. 62.5%, as pathological.

We first transcoded the images in our workload to Qual-
ity Factor values of 75%, 50% and 25% of the origi-
nal Quality Factor values as well absolute Quality Factor
values of 75, 50 and 25. Using various predictor crite-
ria values, we separated the images from our workload
into images that were predicted as efficient images by
the particular criteria. For the images that were predicted
efficient, we measured the percentage of images that ac-
tually transcoded efficiently as well as the percentage of
pathological images that were mispredicted as efficient.
The goal was to increase the percentage of good predic-
tions. The percentage of correct predictions (C%) and
the percentage of egregious mispredictions (E%) were
tabulated in Table 3 and 4 respectively. The results were
tabulated as follows:

The first column in the table shows the criteria that were
used to separate the images. We call the criterionNone,
which includes all the images in the workload as the base
case.

The second column specifies the percentage of images
that satisfy the criteria specified in the first column. For
our study, values less than 10% were ignored because
they categorize an insignificantly small percentage of
images to be useful as a prediction criterion.

The subsequent columns show the results for transcod-
ing the images to 75%, 50% and 25% of the original
JPEG Quality Factor as well as absolute JPEG Quality
Factor values of 75, 50 and 25.



The goal is to choose results that produce significantly
higher C% and lower E% than the base case. The results
for all the images in our workload are shown in Table 3
and 4 respectively. Similar trends were observed for the
individual workloads.

From Tables 3 and 4, we note thatP > 5% predicts less
than 10% of the images (9%) and hence is ignored from
further consideration. For transcoding to Quality Factor
values of 75%, 50% and 25% of the original JPEG Qual-
ity Factor, the criterion(Q > 80) || (P > 3%) predicts
efficient images correctly and mispredicts images at a
rate better than the base case. For transcoding to JPEG
Quality Factor values of 75, 50 and 25, none of the cri-
teria predicts at a significant rate, even though they mis-
predict images at a better rate than the base case. The
value of R is not a useful predictor of the efficacy of an
image for transcoding using the JPEG compression met-
ric.

We cannot make conclusions regarding images that
weren’t predicted as efficient. We tried parameters such
as number of colors, pixel density etc, but could not find
a reliable way of predicting the efficiency of images that
haveP < 3 andQ < 80. We repeated the experi-
ments by varying the definition of P to include images
frequency components over absolute values of 64, 96
and 128 as well as changing the number of frequency
components to 3 and 7. The end results were similar and
the values that we chose better predict efficient transcod-
ings by a slight margin.

5 Related Work

Fox et al.[8] used transcoding to render an image on a
PDA such as Palmpilot, as well as to offset access laten-
cies from slow modems. Noble et al. [18] manipulated
the JPEG Compression metric as a distillation technique
for a web browser that adapts to changing network en-
vironments. Mazer et al. [16] describe a framework for
allowing users to specify their own transcoding trans-
ducers for a application-specific proxy that acts on the
HTTP stream to customize the stream for a particular
client. Ortega et al. [19] have used JPEG progressive
encoding to recode images to lower resolutions, thereby
increasing the effective cache size.

Commercial products such as WebExpress [6] from
IBM, QuickWeb technology [12] from Intel, Fastlane
[21] from Spectrum Information technology and John-
son Grace ART format [1] from AOL have used various
forms of compression and transcoding operations to im-

prove web access from slow networks.

Even though transcoding has been widely used in a num-
ber of systems to deal with network access latencies, dis-
play characteristics or storage space requirements, there
has been little formal work in conducting a systematic
study to measure the information loss associated with
a given transcoding. As previously mentioned, Han et
al.[11] attempted a similar effort to characterize image
transcoding delay as well as the transcoded image size.

The concept of information quality and measuring the
objective and subjective quality of an image has been
well researched and understood. The ability to quantify
the information loss in rendering an image on a partic-
ular hardware is central to measuring the performance
of rendering devices such as monitor, plotters, printers
etc. CIE publishes guidelines on measuring the color
reproduction characteristics. The International Telecom-
munication Union (ITU) publishes recommendations for
subjective assessment of quality of television pictures.

6 Summary

The ultimate goal of our work is to increase the effec-
tiveness of the transcoding technique applied to inter-
net data access. We currently focus on JPEG images.
Given a particular image, we want to be able to deter-
mine whether performing a transcoding operation will
pay off and how aggressively it should be done. Toward
that end, this paper makes the following contributions to
our understanding of the use of image transcoding:

1. We have defined the notion of a “quality aware
transcoding” as a transformation that explicitly
trades off image information quality for reductions
in object size (e.g. transmission length or storage
size).

2. We have found previous work that supports the use
of the JPEG Quality Factor to capture our require-
ment for a quantifiable measure of image informa-
tion quality. This allows us to consider JPEG com-
pression metric as a candidate for quality aware
transcoding.

3. We have developed an algorithm to estimate the
JPEG Quality Factor used to originally produce an
image. This is necessary to make “loss of quality”
a meaningful concept.

4. We have characterized a sample of typical images
available on the internet with respect to their origi-



nal size and JPEG Quality. This allows us to evalu-
ate our work in the context of a realistic workload.

5. We have developed an algorithm to predict the
computational cost involved in transcoding an im-
age. This allows us to evaluate the cost penalty in
performing a transcoding operation.

6. We have developed criteria that can be used to pre-
dict whether an image will transcode efficiently,
avoiding serious mispredictions. This allows us to
evaluate if it will be worthwhile to transcode a par-
ticular image so as to achieve a higher information
quality per byte of image storage.

We are currently investigating heuristics to identify
whether a transcoding from a GIF to a JPEG image for-
mat will be efficient for a particular image.
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