
Contemporary Operating Systems are not ready for Peer Computing:
Peer systems should be treated as second class citizens

Surendar Chandra, University of Notre Dame

Our work is attempting to bridge a critical incompatibility between the design canons of operating systems and peer
computing systems. Operating systems were traditionally tasked with managing the system resources among the
different schedulable entities (processes). Peer computing systems federate thespare resourcesavailable among a
set of independently owned and cooperatingpeers for the common good [1]. Asindependently ownedentities, the
sharing is voluntary. The allocation of only thespare resourcesfor the federation is also important; peer computing
systems are not expected to debilitate the peer from performing other local tasks. Popular peer computing systems
include wireless ad hoc networks and peer-to-peer (P2P) applications (e.g. Skype, Gnutella and BitTorrent). Kernel
forwarding resources in ad hoc scenarios are not accounted to any entity [2] while resource requests from other
peers applications are charged to the peer process. Note that distributed systems such as desktop clusters differ from
peer computing systems in that the shared computing resources are notindependently ownedand belong to the same
organizational entity. Their notion of sharingspare resourcesto other organizational entities is different from peer
computing systems that share resources with (potentially) unknown entities.

The ownership difference has significant implications on the resource allocation mechanisms. Operating systems
use authentication and authorization mechanisms as the gate-keeper to verify access rights to a user. Once admitted,
priorities are used to order the resource requests and quotas are used to limit the resources allocated for the different
processes. However, once a process is admitted, its resource requests are eventually honored. When resources are
scarce, some processes might starve for brief durations. Similarly, prior work on energy conservation mechanisms
delayed waking up certain devices; the corresponding processes waited longer to access these resources.

For constrained and non-renewable resources, this policy conflicts with the design philosophy of peer computing
systems. Peer computing systems requestspareresources from each peer for use by the global federation. However,
the contemporary OS considers all schedulable entities to be first class citizens and all resource requests are honored.
Hence, the resource requests from the peers can consume all the spare capacity of a particular peer. Though such
a policy will provide good resource availability to the global federation, this policy can have a debilitating effect on
the local peer. For example, in an operating system that manages its energy resources (such as in ECOsystem [3]) a
energy constrained peer can completely drain its battery resources to service resource requests from authenticated peer
applications (or at least to the extent of the cumulative energy resource quota assigned to the peer application). In our
earlier work [2], we showed that kernel resources used for forwarding network packets in ad hoc networking scenarios
can completely incapacitate the peer because kernel resource allocation for network forwarding are unaccounted and
unmanaged in contemporary operating systems. In an contemporary operating system, peers are expected to benice
and limit their resource requests - the Operating System itself is not able to manage their resource requests.

We are developing a scheduling class calledless than best effortto address this problem. Under resource con-
strained scenarios, resource requests from this class can either be denied or delayed indefinitely even if such a request
from traditional scheduling classes can be allocated resources. Conceptually, under resource constrained scenarios,
less than best effortallocates resources with lesser priority than for theidle task. For example, a energy constrained
laptop might deny forwarding packets for Skype (potentially forcing the global Skype federation to deny Skype ser-
vices for this peer) and leave the network idle. Similarly, a resource constrained peer might disallow personal file share
requests until sufficient resources are available. When resource availability improves, resource requests from theless
than best effortclass behave in a fashion indistinguishable from traditional resource allocation classes. The challenge
is in creating schedulable entities for peers with no local schedulable entity as well as in managing resources that were
already allocated to peers in theless than best effortscheduling class (that continue to hold resources).
References
[1] R. Peterson and E. G. Sirer. Going beyond tit-for-tat: Designing peer-to-peer protocols for the common good. In

Workshop on Future Directions in Distributed Computing, Bertinoro, Italy, June 2007.

[2] P. Xue and S. Chandra. Revisiting multimedia streaming in mobile ad hoc networks. InACM Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV ’06), Newport, RI, May 2006.

[3] H. Zeng, X. Fan, C. S. Ellis, A. R. Lebeck, and A. Vahdat. ECOSystem: Managing Energy as a First Class
Operating System Resource. InASPLOS ’02, San Jose, CA, Oct. 2002.


