Designing an asynchronous
group communication
middleware for wireless users

Surendar Chandra, Unaffiliated

Xuwen Yu, VMware

Group communication middleware

group of users, each creating updates

Goal: design middleware to propagate update
from each user to all other group members

= Our middleware: delivery order unimportant
= application can order updates

mechanisms:
= Synchronous: members simultaneously available
= Asynchronous: eventually propagate to all users

performance depends on user availability

Behavior for wireless users

modern users wireless: we focus on WLAN users

= @Notre Da

me: 44% of devices wireless (incl. servers)

users operate from many places: home, work ...

availability traces used:

= University (
= Corporate (

Notre Dame): Zeroconf: 12/07 — 8/08
BM Research)*: SNMP, AP: 7/02 — 8/02

= Hotspot fed

* - CRAWDAD archive

eration (lle Sans Fil)*: auth log: 8/o4 - 8/07

User availability characteristics

diurnal variation, weekday/weekend variation
small median session and getting smaller

= 2.8 hrs- corporate, 35 min - hotspot, 20 min - university
large duration between session

= 3.5 hrs- corporate, 9.6 hrs- hotspot, 1.78 hrs- university
session overlap minimal

= cannot sustain synchronous communications
significant node churn

Policies investigated

server mediated: always-ON servers host updates
distributed: propagate via other group members

initiator: periodic push or pull with online users
= Svr-Servinit: server pulls (and pushes) updates

= Svr-Nodelnit: users push (and pul
= P2P-Pull: distributed pull from ot

) updates to server

Ner Uusers

= P2P-Push: distributed push to other users

Practical policy parameters

when to propagate updates
= first: when online or at fixed times

= next: periodically : 5, 15, 30, 60 mins
= adaptive policy based on prior history

= final: not explicitly before going offline

% of neighbors — prior work showed reducing #
neighbors while increasing freq. beneficial

update propagation delay not considered

Performance metrics

lagAmount: measures entropy
= average amount of updates unavailable at a node

= assume update creation rate is constant
= amount of updates = duration online without update

: >
time
.=

= at o, lagAmount = = T—

2

gossips & # unnecessary gossips
= unnecessary if no updates routed using distributed

= unnecessary if no new updates in Serv-Nodelnit

Questions investigated and results

details in paper
Gossips considered ill-suited for quick
dissemination. Quantify conventional wisdom
entropy (lagAmount) depends on:
= user churn and time between sessions

= cannot propagate updates to unavailable users
= users that left will never receive updates

= amount of updates depend on session duration
entropy high for best case (Svr-Servinit, delay=0)

= corporate: high availability during weekdays
Relative overhead: distributed competitive g

Questions investigated and results

Are push & pull mechanisms complementary?
No, pull better randomizes update propagation

= updates created after last propagation increases
entropy, especially when large duration bet. sessions

= push: last propagation decided by own frequency
too frequent = high gossips
_———————————

= pull: last propagation decided by group (random)
once update leaves creator, can be propagated by others

————————————
= push+pull: higher cost

Questions investigated and results

tradeoffs for more frequently propagating
messages to fewer nodes

simultaneously available nodes small, better to
send to everyone (correspondingly less frequent)

further details in paper

10

