flockfs, a moderated group authoring system for wireless workgroups Surendar Chandra and Nathan Regola

group authoring system for wireless users In lieu of maintaining single version, maintain multiple copies: each reconciled using moderation

Group authoring systems

Group members modify a shared document

\$\$ Synchronous: NFS, AFS, Google Docs, SubEthaEdit ...

* Asynchronous: Coda, Bayou, Apple iDisk, Windows Live (Mesh, SkyDrive, Sync) ..

Centralized

good availability and control maintain cache consistency

Goal: develop system for contemporary users

Distributed

* ease of deployment

propagate and reconcile updates

Contemporary users are wireless

First, evaluate prior systems

Evaluation requires durations: * when members can participate in group communications * e.g., long durations between sessions affect asynchronous propagation * collected empirical wireless availability traces at Notre Dame when groups modify shared contents * e.g., long simultaneous modification affects exclusive modification schemes * few deployed systems. Hence, when online synthesized update sessions: \star group sizes: 5, 10, 20, 30 \star every so often (1, 2, 3 or 4), start randomly, last for up to 0.5, 1 or 2 hrs

Availability

tıme→

critiques to random group, sessions..

- schedule meetings: high simultaneous availability
 - * poor system behavior when users are simultaneously available
 - future work: empirical measurements from flockfs
- how about decompose document into sections that are modified by each group member
 - * consider complex documents where changes are global

Wireless availability traces

Zeroconf __workstation records: Mac and Linux configured campus wireless to route packets to monitored VLAN 12/3/07-8/25/08, 2.7k users diurnal and week day variance \Rightarrow session: median < 20 min, 95% < 75 min ***** between session: median < 1.4 hr, 29% > 10 hr node churn throughout more details in paper

Behavior of prior systems

- 1. centralized: exclusively lock object during entire session, others read prior document version
 - conflicting attempts to modify object: delay or fail
- 2.centralized: last writer wins

 - * optimistic, allows concurrent updates, long session preempt ***** sessions that are preempted conflict
- 3.peer-to-peer: pair-wise anti-entropy like bayou
 - * out of order update delivery
 - roll-forwards and roll-backs

Analysis of prior systems

prior schemes attempt to maintain single version * poor performance when many users are available pessimistic schemes: consistent but poor performance * allows few modifications * users need to serialize * optimistic schemes: inconsistent views

details in paper

Design philosophy

* wireless availability characteristics requires maintaining multiple versions

need to reconcile changes among multiple versions - moderation

* Using reconciliation to share files between occasionally connected computers. John H. Howard. Workshop on Workstation Operating Systems '93

Flockfs: moderated collaboration system

maintain 'n' authoritative copies

* each group member exclusively modifies their version

* each group member hoards read-only copies of others contents

author incorporates updates from others using moderation

RW

Moderation

manual reconciliation of updates from (n-1) others

Abstract: exhibits acceptable file system performance and update propagation latency... **Experiments**: lozone read performance within 5% of FUSE performance...

Abstract: ??? ...

Abstract: ... Place holder. Alice is responsible for this ...

knol.google.com

Moderation

- automated moderation more complex than pairwise automated reconciliation (future work)
- Iog provenance to assist in convergence
 - unique version for each update session
 - Iog operations on read-only replica along with author copy
 - * assumption: open() == changes incorporated into author version
 - * others can query log to know if changes incorporated

* more later

- * Resolving File Conflicts in the {Ficus} File System. Peter Reiher, John S. Heidemann, David Ratner, Gregory Skinner and Gerald J. Popek. USENIX '94
- * Flexible and safe resolution of file conflicts. Puneet Kumar, M. Satyanarayanan. USENIX '95

Flockfs interface

instruct flockfs to hoard contents from sam

sam

system support programs

publish "Comment" ends an update session. Comment is available to others *status* prints comments and provenance records file.c Comment: Fixed the buffer overflow Opened: sam:common.h Sat Apr 10 21:24:15 EDT 2009

* Opened: bob: object.c Sat Apr 18 17:31:00 EDT 2009

1:24:15 EDT 2009 1:00 EDT 2009

system architecture

FUSE userspace file system * epidemic based middleware* P2P approach competitive pull with frequency adaptive to session length Git based file maintenance ***** Reuse optimized software, good compression

* Yenta: An asynchronous group communication middleware for wireless users, MSWIM 2009

performance

IOzone file system benchmark

- similar to fuse filesystem on Mac
- asynchronous update propagation

Operation	powerbook laptop (MB/s)			iMac desktop (MB/s)		
	native	fuse	flockfs	native	fuse	flockfs
write	22.74	16.65	16.28	57.63	41.35	40.27
read	22.46	16.12	15.67	55.06	52.31	56.30

summary

- analysis of wireless user availability shows limitation of prior collaboration systems
- propose to maintain 'n' definitive copies with provenance logging. manual convergence
- fuse and git helps build quick prototype
 - * acceptable file system performance
- future work: user studies
 - Available: <u>http://flockfs.sourceforge.net/</u>

