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ABSTRACT

This work explored mechanisms to asynchronously distribute video objects to intranet users. The primary application
driver was to disseminate lecture videos created by the instructor as well as annotated videos from students. The storage
requirements made remote storage mechanisms as well as local infrastructure storage impractical. Hence, we investigated
the feasibility of distributing video contents from user devices. Based on the recent trend of devices going wireless, we
analyzed the viability of using laptop devices. We envision a variant of RSS feed mechanism that searched for the lectures
among currently available replicas. The effectiveness of this distribution mechanism depended on the total number of
voluntaryreplicas and availability patterns of wireless devices. Using extensive analysis of the observed node behavior,
we showed that though laptop users were online for shorter durations, their temporal consistency can provide reasonable
availability, especially at the times of the day when students were typically active.

1. INTRODUCTION

With the commoditization of multimedia technologies, it is becoming easier to capture, process and consume video objects.
Consider an application that captured all the lectures in an university setting to motivate this work. In our earlier work,1 we
showed that it was relatively easy for an instructor to capture their lectures. Capturing a 50 minute lecture in three H.264
variants: Apple iPod compatible QVGA format, a 1280x760 HD object optimized for a 2 Mbps stream and an enhanced
audio podcast version required about 2 GB of storage per lecture. Higher fidelity variants allowed for capturing contents
in the chalk-board without using special mechanisms2 to highlight small details. Each course required about 80 GB per
semester while capturing all the classes could consume as much as 185 TB of storage per semester. Many students also
had the computational ability to annotate and create their own versions of these lectures.

Even though it was easy to create multimedia objects, several challenges existed in distributing these large contents.
Producers and consumers were primarily located within the same organization. Synchronous delivery required that all
participants be simultaneously available. Free distribution services such as YouTube place severe restrictions on the stream
fidelity. Also, placing the contents outside the intranet can saturate the organizational egress links. For example, our
university used an 150 Mbps link to the Internet. Downloading each lecture across all the courses once for a semester
would require a third of the available bandwidth for the entire year. Increasing the number of downloads as well as stream
fidelity can overwhelm our campus Internet connection.

Rather than storing contents in the global Internet (either in centralized or in distributed peer-to-peer storage), we
explored mechanisms to store them within the campus. Given the storage size requirements (e.g., about 185 TB per
semester in our example), it was unlikely for the university to provide a managed storage for hosting these contents. Hence,
we investigated mechanisms to federate desktop storage resources. Wireless laptops are gradually replacing desktops as
the primary computing platform for many users. USA today3 described the emergence of about 30 million (American)
mobile laptop users. In our own campus (as of October 2007) there were 12,322 (active) wireless devices. Similar trends
of wireless device popularity appear to be true in other universities as well.4 Also, laptops are matching the resources
available in a desktop device; boasting storage resources as high as 300 GB. In the near future, high speed wireless LAN
technologies such as IEEE 802.11n are also expected to be popular. Hence, we investigated the feasibility of using a
federation of wireless devices to store and distribute multimedia contents.

Even though laptops supported large amounts of storage resources, they also introduced availability challenges that
may not be observed in a corporate desktop setting.5 Laptops may be offline for longer durations, potentially affecting the
object availability. We investigated the availability characteristics of IEEE 802.11 WLAN users in an university setting
in order to understand the availability of objects replicated and serviced by these devices. The wireless network was
widely deployed; spanning most classrooms, student center, sports stadia as well as the student dormitories. For our study,
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Figure 1. RSS feed for podcast distribution

we required popular applications that users were already using to share contents. Earlier,6 we showed that there were
significant number of users who already shared contents using Apple iTunes†. We leveraged this popularity and develop
mechanisms that will use iTunes to share and distribute contents. During our study, there were 9,605 active wireless
devices. The paper answers the following questions:

• What were the node availability characteristics of WLAN users in an university setting?The node availability
depended on the time of the day and were lower than was observed behavior on corporate desktops.

• Given the churn rates, are the node availability behavior predictable?We showed that the temporal consistency
values were high: both for analyzing the same users availability behavior or for any two pairs of users. Users who
were part of the high consistency set can provide collaborative services.

• What are the expected data availability for storage system built using contributed storage from laptop users?We
showed that the availability of objects can be high, both for class mates as well as to the Internet users.

In the rest of the paper: Section 2 described the system architecture and the experimental setup, Section 3 described
the experimental results in, Section 4 described related work with conclusions in Section 5.

2. SYSTEM ARCHITECTURE

Our system will allow all Internet and intranet users to access contents. The objects are provided by the content creators
as well by other users who voluntarily share contents that they had downloaded for their own use. Depending on the node
availability, objects may be unavailable during certain times. Unlike Samsara,7 we are not yet concerned with fairness;
users are not required to share contents in order to access other contents. Users are allowed to replicate and distribute
contents without any rights management concerns; sensitive information may be protected using end-to-end mechanisms.

We used the object sharing functionality built into Apple iTunes application. iTunes currently supports sharing and
locating objects available within the same subnetwork. iTunes users can disable sharing while still accessing contents from
other shares. iTunes used podcast‡ RSS 2.0 XML feed mechanism (distributed from a fixed URL location) to distribute
shared contents (Fig. 1(a)). Among other fields, the XML file described episodes of PDF, audio or video files, identified by
an uniqueguid and served from a fixed URL specified in theenclosurefield. We relaxed the requirements of serving the
XML feeds and the media objects from a fixed URL (Fig. 1(b)). The clients will search for a copy of the XML feed as well
as theguid of the media objects from any of the currently available iTunes shares. Next, we described the experimental
setup used in analyzing the online behavior of wireless users.

†http://www.apple.com/itunes/
‡http://www.apple.com/itunes/store/podcaststechspecs.html

http://www.apple.com/itunes/
http://www.apple.com/itunes/store/podcaststechspecs.html
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Figure 2. Number of simultaneously available nodes

2.1. Experiment Setup
We used the Zeroconf§ protocol to collect the availability statistics of wireless devices. Zeroconf pushed the service
availability information to the monitoring client using link local multicast. Since these multicast packets were not routed,
we required the monitoring station to be co-located inside the monitored VLAN. We collected data for eleven days from
Sep. 19, 2006 through Sep. 29, 2006. During this duration, the entire campus wireless LAN infrastructure was configured
to route all Zeroconf service discovery packets to the monitoring station. This allowed us the flexibility of not installing a
monitoring station inside each of the campus WLANs. We monitored thedaapservice using thedns-sdtool; iTunes users
that were also sharing their song contents to other users responded to thedaapservice. During the two weeks prior to Sep
25, 2006, about 9,600 computers used our wireless networks: 7,592 running Windows (or Linux), 1,939 running Mac OS,
72 running Linux and other OSs. Our logs showed 1,702 unique machines providingdaapservice.

2.2. Research questions addressed
• What were the node availability characteristics of WLAN users in a university setting?(Sec. 3.1)? Availability

metric is an important aspect of designing our distribution system.

• Given the churn rates, were user behavior predictable?(Sec. 3.2)? Predictability implies user behavior that was
temporally consistent. We also analyze the likelihood of pairs of host being simultaneously available or unavailable.

• What were the object availability for various class sizes and replication rates?(Sec. 3.3)? Answers to this question
will help decide whether it is possible to share contents.

3. EXPERIMENTAL RESULTS

We analyzed the node availability characteristics and predictability of node behavior. We analyzed the number of users
that were simultaneously online, average available time and churn frequency of the users. We also showed the object
availability to users both within and outside the campus for various class sizes and replication rates.

3.1. Node availability characteristics
3.1.1. Simultaneously available nodes

First, we plotted the total number of nodes that were simultaneously available according to the time of the day in Fig. 2.
The data capture began on a Tuesday. We observed that the system exhibited a diurnal behavior with less activity in the

§http://www.zeroconf.org/

http://www.zeroconf.org/
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(a) Daily average available time
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(b) Churn frequency (number of times user unavailable in a day)

Figure 3. Average daily behavior across all users

early morning hours (1 AM to 9 AM). Of the 1,702 unique users, about 100 through 250 (6%-15%) were simultaneously
available. Next, we manually analyzed the traces for users that were available late (say 3:00 AM). For example, one such
user was available from 1:00 AM to 9:00 AM, followed by availabilities during the day (e.g., 4:08 to 4:38 PM and 7:10-
7:54 PM). Such behavior was consistent with laptop users who were mobile during the day and were sharing their contents
while their laptops were left charging during the night. Prior work had also noticed similar behavior: about 30% always-on
users for the most active trace from Dartmouth dataset,8 and about 20% always-on users for the MIT9 and USC10 datasets.

For comparison, Farsite11 conducted a similar study of corporate desktops usingpingmessages in September 1998. Of
the 51,662 unique hosts analyzed, they noticed that 40,000 to 45,000 (77% to 87%) desktops were simultaneously available
with less than 5% diurnal variation during weekdays and 10% over the weekend.

3.1.2. Daily available time and churn

Next we analyzed the daily available duration and churn rates of each individual user. Consider an user who transitioned
twice between the available and unavailable states in a single day. This user was available during intervalsx1 andx2 and
unavailable during intervalsy1, y2 andy3. Each of these intervals (x1, x2) was a session and the associated durations
were session times. Users may be unavailable because they went offline or because they explicitly disallowed sharing. The
daily available time equaled the sum of session timesx1 + x2 while the daily churn rate in our illustration was two. The
durations were computed by averaging the available times and churn rates across the entire eleven days. The daily available
duration gives an indication of the collaboration potential and churn rates gives an indication of the node reliability. We
plotted the distributions of the average daily available time and the churn frequencies in Figs. 3(a) and 3(b), respectively.
From Fig. 3(a), we noted that the availability was poor for a large number of users. The median available duration was less
than an hour. On the other hand, over 15% of the users were available for more than three hours in a single day and 13%
of users were available for more than six hours on average in a single day.

Next we analyzed the daily churn frequency as the number of available/unavailable transitions. Fig. 3(b) showed that
the median churn was about one. Strangely, about 20% of the users exhibited large churn, in excess of ten times in a single
day. We could not repeat this behavior under controlled settings.

3.2. Predictability of node behavior

So far, we noted that the availability dynamics of wireless users were worse than the reported behavior of corporate desktop
users. Even if the nodes were not available all the time, distribution systems can perform well when collaborating users
were simultaneously online. The next challenge was to investigate whether one can predict durations when the users will
be online. We conducted this prediction along two axes: predict whether a given user became temporally available and
unavailable in a predictable fashion and whether a group of users always occurred as a correlated group.
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Figure 4. Temporal available time consistency

3.2.1. User’s temporal behavior

We analyzed the system to see if users exhibited predictable behavior by being consistently available at the same time.
Suppose a significant percentage of the users were available at (say) 10 AM. One can then build a distributed storage that
will give good consistency during this time on every day (when other users are also simultaneously online). On the other
hand, if we noticed that a significant number of users were not consistently available at (say) 10 AM, then one can safely
ignore this time period. Even though one cannot build a collaborative system at this particular time, it may not matter
because there were no other users who could care about the non-availability of a storage at this time.

We computed the rate of available time consistency as follows: we defined consistency at a specific hour by the metric
that the user will either be consistently available or unavailable on all the eleven days. For example, if either the user
was not available on all eleven days or the user was unavailable on all eleven days at a specific time, we computed the
consistency at that time as one. If the user was available for half the time and unavailable for the other half, then the
consistency was zero. We computed the consistency values for the user in steps of one hour for the entire 24 hour day and
normalized it by dividing by 24. We plotted a cumulative distribution of the rate of available time consistency in Fig. 4.
A value of one indicated that all users were consistent (always available at all times or unavailable at all times) whereas a
value of zero implied that users were equally likely to be either available or unavailable with no consistent way to predict
their behavior. From Fig. 4, we noted that 90% of the users had consistency values of over 0.7. Only 5% of the users
had values of 0.4 or lower. These values suggest that, even though there may not be many users who are available at all
times (as compared to Farsite), a large number of users were predictable in terms of times that they were available (or
unavailable) and a small number of users consistently form a recurring group. This behavior has significant implications
for developing collaborative applications.

3.2.2. Pairwise correlation

Next, we plotted the cumulative distribution of the temporal correlation value for all the user pairs in Fig. 5. This function
was previously described by Bolosky et. al.11 We computed the temporal correlation value for all user pairs as follows:
added one when two users were either simultaneously available or unavailable and subtracted one when only one of the
two users were simultaneously available. We sampled the system every hour. The results were normalized by dividing by
the total sample count. As was described in Sec. 3.2.1, we preferred values of one as it suggested that the pair of users
were either both available or unavailable. On the other hand, a value of -1 suggests that the behavior of the pair of users
was unpredictable. From Fig. 5, we noted that over 50% of the users had a temporal correlation of user pair values of 0.7.
Compared to the behavior of corporate desktops,11 which observed values of 0.5 for 50% of the users, our scenario shows
higher correlation.
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Figure 5. Temporal correlation value for all machine pairs
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(a) group size = 5
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(b) group size = 10
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Figure 6. Availability rates for students from same class

3.3. Object availability

In the last two sections, we analyzed various aspects of wireless node availability. Next, we analyzed the implications of
this node availability behavior on our ability to distribute video contents, both to students who were registered in the same
class as well as to everyone. As described in Sec. 2, nodes that were currently available, had a copy of the contents and
were voluntarily willing to share the contents affected the object availability.

3.3.1. Availability to students from the same class

First, we analyzed the object availability to students who were also registered to the same class as other student content
creators and the instructor. The node temporal correlation values should help this scenario as objects need not be accessible
during durations when none of the participants were available. Our goal was to understand the effects of class size on object
availability. We analyzed the behavior of the system for classes of sizes five, ten and fifty. We expected better availability
for large classes. We plotted the object availability rates for students who had not replicated the contents in Fig. 6. These
results were measured as the average of choosing 1,000 different group participants. For a group size of five (Fig. 6(a)),
20% replication rate (one replica) provided about 10% availability. Four replicas improved these values to 25%. For a class
size of fifty, the availability rates can be as high as 90%.

3.3.2. Availability to all students

Next, we analyzed the availability for any user. This scenario suffered during durations when few nodes were available
(e.g., early morning). We plotted the temporal availability rates for using two, ten as well as 25 replicas in Fig. 7. The
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Figure 7. Availability rates for everyone

availability changed with the time of the day and with the replication rates. These availability rates for a particular content
were observed by everyone in the campus, including Internet users who could use the contents from any available replicas.
The objects were available about 20% of the time for an object that was replicated twice with an availability rate of 95%
for using 25 replicas.

3.3.3. Summary of results

We analyzed the object availability rates for various class sizes, replication rates and target audiences. Availability im-
proved with the presence of more replicas. Given the diurnal user behavior, the availability rates were higher during week-
day daytimes rather than late nights. Since few users were available during these late-night hours, the effective availability
could be high (this observation did not hold for Internet users). Our system will likely use voluntary users exclusively for
large classes while actively creating replicas in users registered to large classes to augment the replication rates for smaller
classes. Identifying classes that would need special replication is the focus of ongoing research.

4. RELATED WORK

A number of prior efforts analyzed the behavior of users under a variety of application and networking scenarios. Farsite11

analyzed the behavior of wired corporate desktops using network ping messages. Balazinska et. al.9 analyzed the behavior
of corporate wireless users using access point SNMP probes. A number of prior efforts8,12,13monitored the WLAN network
in a university setting using packet traces and access point SNMP probes. Hsu et. al.10 presented a comprehensive analysis
of the user mobility behavior across four different university campuses using access point logs. We analyzed higher level
availability of university users. Data link layer mobility was not captured; any user who migrated across access points were
considered to be continuously online even though they associated and dis-associated with multiple access points.

Srinivasan et. al.14 analyzed the class roster and schedules from a intranet learning portal to infer contact patterns of
students, inter-contact time, time distance between pairs of students and how these characteristics impacted the spread of
mobile computer viruses. They also exploited these contact patterns to design efficient aggregation algorithms. Musolesi
et al.15 presented a mobility model based on a social network theory. Hsu et al.16 modeled the time-variant user mobility
among large social groups. Our work focused on the broader university wireless user behavior using observed behavior.

There has been a rich body of work on aggregating the storage from a number of distributed storage components.
Anderson et. al.17 built a server-less network file system using workstation storage. Farsite5 built an distributed storage
using corporate desktops. Vazhkudai et. al.18 constructed a storage using desktops for storing large scientific datasets.
These systems expected much higher availability from the storage components.



5. DISCUSSION

This paper addressed the problem of asynchronously distributing large video objects to a set of intranet users using resource
rich wireless devices. Building on a deployed and popular sharing application such as Apple iTunes allowed us to address
the deployability concerns among independent laptop users. We analyzed a large number of wireless users in an university
setting. Though the availability rates were not as high as what was observed in a corporate desktop setting, a large fraction
of the the users showed high temporal consistency. This allows for high availability with reasonable replication during
daytimes on weekdays. Ongoing research will analyze practical availability for specific user groups as well incentive
mechanisms (similar to Cox et al.7) to spur sharing among students.

REFERENCES

1. S. Chandra, “Lecture video capture for the masses,” inITiCSE ’07: Proceedings of the 12th annual SIGCSE confer-
ence on Innovation and technology in computer science education, pp. 276–280, June 2007.

2. L. A. Rowe, D. Harley, P. Pletcher, and S. Lawrence, “Bibs: A lecture webcasting system,” Tech. Rep. 2001–160,
Berkeley Multimedia Research Center, June 2001.

3. M. R. della Cava, “Working out of a ’third place’.” USA Today, Oct. 2006. 10/5/2006.
4. D. Kotz and T. Henderson, “Crawdad: A community resource for archiving wireless data at dartmouth,”IEEE Perva-

sive Computing4, pp. 12–14, Oct. 2005.
5. A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer,

and R. P. Wattenhofer, “Farsite: federated, available, and reliable storage for an incompletely trusted environment,”
SIGOPS Oper. Syst. Rev.36(SI), pp. 1–14, 2002.

6. S. Chandra and X. Yu, “Share with thy neighbors,” inMultimedia Computing and Networking (MMCN 2007), (San
Jose, CA), Jan. 2007.

7. L. P. Cox and B. D. Noble, “Samsara: honor among thieves in peer-to-peer storage,” inProceedings of the nineteenth
ACM symposium on Operating systems principles, pp. 120–132, 2003.

8. T. Henderson, D. Kotz, and I. Abyzov, “The changing usage of a mature campus-wide wireless network,” in10th
annual conference on Mobile computing and networking (MobiCom ’04), pp. 187–201, 2004.

9. M. Balazinska and P. Castro, “Characterizing mobility and network usage in a corporate wireless local-area network,”
in MobiSys ’03, pp. 303–316, 2003.

10. W. jen Hsu and A. Helmy, “Impact: Investigation of mobile-user patterns across university campuses using wlan trace
analysis,” tech. rep., USC, July 2005.

11. W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer, “Feasibility of a serverless distributed file system deployed
on an existing set of desktop pcs,” inSIGMETRICS ’00: Proceedings of the 2000 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, pp. 34–43, 2000.

12. D. Tang and M. Baker, “Analysis of a local-area wireless network,” inACM International conference on Mobile
computing and networking, pp. 1–10, 2000.

13. D. Kotz and K. Essien, “Analysis of a campus-wide wireless network,” inMobiCom ’02: Proceedings of the 8th
annual international conference on Mobile computing and networking, pp. 107–118, 2002.

14. V. Srinivasan, M. Motani, and W. T. Ooi, “Analysis and implications of student contact patterns derived from campus
schedules,” inMobiCom ’06: Proceedings of the 12th annual international conference on Mobile computing and
networking, pp. 86–97, 2006.

15. M. Musolesi and C. Mascolo, “A community based mobility model for ad hoc network research,” inWorkshop on
Multi-hop ad hoc networks: from theory to reality (REALMAN06), pp. 31–38, 2006.

16. W. jen Hsu, T. Spyropoulos, K. Psounis, and A. Helmy, “Modeling time-variant user mobility in wireless mobile
networks,” inIEEE INFOCOM 2007, pp. 758–766, (Anchorage, AK), May 2007.

17. T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roselli, and R. Y. Wang, “Serverless network file
systems,”ACM Trans. Comput. Syst.14(1), pp. 41–79, 1996.

18. S. S. Vazhkudai, X. Ma, V. W. Freeh, J. W. Strickland, N. Tammineedi, T. Simon, and S. L. Scott, “Constructing
collaborative desktop storage caches for large scientific datasets,”Trans. Storage2(3), pp. 221–254, 2006.


	Introduction
	System Architecture
	Experiment Setup
	Research questions addressed

	Experimental Results
	Node availability characteristics
	Simultaneously available nodes
	Daily available time and churn

	Predictability of node behavior
	User's temporal behavior
	Pairwise correlation

	Object availability
	Availability to students from the same class
	Availability to all students
	Summary of results


	Related work
	Discussion

