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ABSTRACT
Faithful sharing of screen contents is an important collaboration
feature. Prior systems were designed to operate over constrained
networks. They performed poorly even without such bottlenecks.
To build a high performance screen sharing system, we empirically
analyzed screen contents for a variety of scenarios. We showed that
screen updates were sporadic with long periods of inactivity. When
active, screens were updated at far higher rates than was supported
by earlier systems. The mismatch was pronounced for interactive
scenarios. Even during active screen updates, the number of up-
dated pixels were frequently small. We showed that crucial infor-
mation can be lost if individual updates were merged. When the
available system resources could not support high capture rates, we
showed ways in which updates can be effectively collapsed. We
showed that Zlib lossless compression performed poorly for screen
updates. By analyzing the screen pixels, we developed a practical
transformation that significantly improved compression rates. Our
system captured 240 updates per second while only using 4.6 Mbps
for interactive scenarios. Still, while playing movies in fullscreen
mode, our approach could not achieve higher capture rates than
prior systems; the CPU remains the bottleneck. A system that in-
corporates our findings is deployed within the lab.

Categories and Subject Descriptors
J.m [Computer Applications]: Miscellaneous

General Terms
Experimentation, Measurement, Performance

Keywords
ScreenCast, DisplayCast, Screen Capture, Screen Sharing

1. INTRODUCTION
Screen sharing is integral to collaboration scenarios such as audi-

torium projection, remote learning and debugging, multi-user screen
sharing and interaction as well as in screencast archival. Consider
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an usage scenario: Emily presents her simulation plots from cloud
servers on a high resolution auditorium projector. Amy watches
this presentation on her laptop using the intranet wireless while Bob
joins in using in-flight WiFi. Bob then displays another article on
the projector that portends the impact of Emily’s work. Impressed
by these results, Amy sends these screens to other colleagues.

Even though the participants want to share without any restric-
tion on their shared contents, resource availability places some re-
strictions. Emily might use a dedicated Gbps wired link between
the cloud servers that generate her plots and the projector PC. How-
ever, Bob laptop’s small display and slow in-flight network limits
his ability to watch these plots in high fidelity. We desire a system
that can faithfully capture the screens while operating in a resource
rich environment and yet be adaptable to modest scenarios.

The screen capture mechanism also plays a crucial role. Emily
could share her data for plotting on the projector PC and on Bob’s
laptop. Similarly, Bob sends his PowerPoint report to the projector
PC. These data objects are likely compact and network efficient.
However, the recipient is required to have the appropriate software
setup; Amy needs a PowerPoint player to read the report shared by
Bob. Also, privacy concerns might limit sharing the entire data;
Bob only wants to send select portions to the projector PC.

Instead, we focus on sharing screen pixmaps. A pixmap repre-
sents the screen image as an array of pixel color values. Pixmaps
are generated after any application specific rendering. Graphics
rendering frameworks also create pixmaps for display. Most oper-
ating systems provide a mechanism to capture and display pixmaps.
Hence, sharing pixmaps is portable and popular; systems such as
Virtual Network Computing (VNC) [21], Microsoft Remote Desk-
top (RDP) [5], Google Chrome Remote Desktop and Cisco WebEx
(http://www.webex.com/) also capture pixmaps.

We target resource rich intranet scenarios. Modern laptops use
fast, multicore processors. IEEE 802.11n WLAN supports band-
widths of 600 Mbps while the upcoming IEEE 802.11ac promises
bandwidths of over 1 Gbps. Earlier systems were designed to op-
erate in resource constrained environments. They were unable to
scale to support scenarios that did not experience such bottlenecks.
Using wired networks, Wallace et al. [26] only measured a pixmap
delivery rate of 4.5 frames per second for VNC.

To understand the requirements for a high performance screen
sharing system, we investigated the nature of screen updates; both
in terms of the rate at which they are generated as well as the kinds
of pixels that comprise them. The update dynamics is application
dependent. Hence, we analyzed the screen dynamics while using
various applications ranging from playing movies to computer gen-
erated animations, presentations, web browsing and interactive ed-
itors. We wanted a portable approach. Hence we performed exper-



iments under Windows 7 and Mac OS X Snow Leopard. We used
two different laptops to assess the impact of hardware capability.

Screen contents were dynamic and behaved differently than fixed
frame rate videos. Pixmap generation rates were sporadic with long
inactivity durations. Computer generated animations and interac-
tion artifacts created new pixmaps at rates that were only limited
by the laptop processing capability. On modern laptops, pixmaps
need to be captured at rates far higher than 100 updates per second
(ups) to minimize the pixels lost during capture. Future proces-
sor improvements will necessitate even higher update rates. We
observed significant differences between applications. Sometimes,
the same application (e.g., Adobe Flash game) behaved differently
between Windows 7 and Mac OS X. Different applications behaved
differently while operating on the same object. For the same H.264
compressed movie, Windows Media player doubled the rendering
rate as compared to the Quicktime player. Inexplicably, the cap-
tured pixmaps also exhibited less inter-update similarity than with
the Quicktime player. Windows 7 created more small pixmaps and
a faster processor increased the number of small updates.

We showed the inadequacy of Zlib compression for screen up-
dates. We quantified the redundancy in screen pixmaps and devised
schemes to achieve higher compression efficiency by transforming
the inter-update pixel temporal redundancy into intra-update spatial
redundancy. We improved the compression factor of 5.1:1 achieved
by Zlib to 143:1; a 28 fold improvement in compression efficiency.

We built DisplayCast [13], a high performance screen sharing
system using our observations. Our system captures and com-
presses over 240 ups for interactive scenarios. We devised ways of
effectively responding to scenarios in which the update rates over-
whelm the available resources. We empirically show that in Win-
dows 7, a delay of 16 msec to wait to capture the end of an update
flurry was reasonable. Our system natively operates in Windows 7
and in Mac OS X and is deployed in a production setting.

Next, §2 describes prior work. §3 describes the experiment setup.
§4 analyzes pixel generation rate for various usage scenarios. §5
analyzes the spatial overlap between updates and devices schemes
for effectively responding to resource constraints. §6 analyzes the
pixels and devices a transformation to Zlib that improves screen
pixmap compression efficiency. We briefly describe the Display-
Cast system that uses our findings in §7 and conclude in §8.

2. RELATED WORK
Prior systems used several ways for screen capture. Some ap-

proaches partitioned applications with the local component sending
the encoded objects for remote rendering. For example, Apple Air-
play [6] sends audio and video for playback to an Apple TV while
Microsoft Windows Media player [10] sends media to the RDP
player. Similarly, the Access Grid Distributed PowerPoint tool [25]
remotely shares PowerPoint presentations. Since these systems use
the original objects, they achieve high network efficiency without
requiring additional CPU resources. On the other hand, they re-
quire tight integration between the endpoints. Remote components
must precisely render the redirected objects. They must also en-
force all access control restrictions. Thus, Microsoft’s own Mac
OS X RDP player does not support player redirection. This lack of
generality limits this form of screen sharing.

Another approach captures the rendering commands sent by ap-
plications to frameworks such as Apple Cocoa, Microsoft DirectX
and OpenGL. For example, GLX [3] extensions to the X windows
protocol provides remote rendering capability for OpenGL appli-
cations. WireGL [17] renders OpenGL commands across a cluster
of servers in a display wall scenario. Estes et al. [15] describe
a display abstraction that allows applications to expose some ap-

plication semantics to remote displays. Note that applications can
choose among a variety of frameworks. They can also use more
than one framework; limiting the generality of this approach.

Capture appliances such as NCast (ncast.com) digitize and
encode a VGA stream sent from the laptop to the projector. Using
a proprietary point-to-point wireless network, WHDI [7] supports
1080p uncompressed video. The Intel WiDi [4], Apple Airplay
mirroring [6] and Sony wireless screen mirroring encode screen
updates into a wireless H.264 stream using special encoding hard-
ware. These systems treat the screen contents as a movie and trans-
mit them at fixed update rates. We empirically show that the rate of
update creation on typical laptops is far higher than is supported by
these systems. The playback devices are also not ubiquitous.

Screen capture as a sequence of pixelmaps is also popular. VNC
[21] shares screen pixmap updates using the remote framebuffer
(RFB) distribution protocol [20]. Wallace et al. [26], Boyaci et al.
[11] and Satoshi [22] extend VNC to share pixmap updates from
specific application windows. RFB is a client driven lazy request-
response protocol that sends the captured pixmaps uncompressed
or compressed using lossless Zlib [19] or lossy JPEG [12]. Clients
adapt to network conditions by requesting new updates on receipt
of responses for prior requests. The server is not required to re-
spond to a client request within a specific time limit (if at all). Thus,
pixmap updates can be missed because the client was too slow in
requesting the next update or because the server was unwilling to
respond faster. Prior work did not quantify the nature of pixmaps or
the interactions between the RFB protocol and the screen capture.
We empirically show the inadequacy of the pixmap delivery rate of
4.5 that was measured for traditional VNC servers [26].

Sun et al. [24] note high update rates for interactive thin-client
applications. We empirically measure the update rates for vari-
ous application scenarios. They improve compression efficiency
by caching several prior pixmaps on the client and server. We only
maintain current and prior screen contents on the server.

Schmidt et al. [23] describe the SLIM extension to VNC where
remote application activity triggers update push from the server. In
§5, we show that pixmaps need to be sent at high rates (that are
unsupported by VNC) to avoid losing pixels to spatial overlap.

Intel Active Management Technology (AMT) implements a BIOS
VNC server that does not rely on the operating system. Since the
framebuffer does not retain information about whether any contents
were updated, AMT periodically polls the entire framebuffer.

Google Chrome Remote Desktop encodes the screen as a VP8
video. The frame rate depends on VP8 performance on a particular
device. H.264 compression is efficient. However, our state-of-the-
art laptop achieved less than 10 fps while using hardware acceler-
ated H.264 encoding. OnLive (onlive.com) hosts video games
and applications on its cloud servers. The output screen is then
divided into 16 segments, each of which is compressed separately
using a special H.264 encoder to achieve low latency compression.

MS RDP is a proprietary screen sharing system. RDP reconfig-
ures the desktop to ease the screen capture. It supports redirecting
audio, GPU, file system, printer, pointer, port, aero glass and Win-
dows Media player using tight integration between the service, op-
erating system and applications. Not all RDP features are available
in all OS versions. Our pixmap capture approach is portable and is
applicable to the pixmap capture component of RDP.

Screencast is the act of capturing and distributing a podcast video
of the display screen contents, especially during lecture presenta-
tions. For example, the TechSmith Camtasia tool allows for easy
presentation screen capture and distribution through the http://
screencast.com portal. They create a fixed frame rate video
without considering the effect of pixel loss due to spatial overlap.
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Figure 1: Screen capture from three usage scenarios

3. EXPERIMENT SETUP

3.1 Pixmap update collection framework
We used two 15” Macbook Pro laptops: one with a 2.66 GHz

Intel Core 2 Duo CPU, 4 GB of 1067 MHz DDR3 memory, NVidia
GeForce 9400M and 9600M GPUs with 256 MB of VRAM and a
1440x900 pixel display and another with a 2 GHz quad core Intel
i7 CPU, 8 GB of 1067 MHz DDR3 memory, Radeon HD 6490M
GPU with 256 MB of GDDR5 memory and Intel HD Graphics
3000 GPU with 384 MB shared memory and a 1680x1050 pixel
display. We refer to these laptops as C2D and i7, respectively.

Each laptop was dual booted to either Windows 7 SP1 or Mac OS
X SL (10.6.8) using Apple BootCamp. On Mac OS X, we used the
CGRegisterScreenRefreshCallback() call to receive asynchronous
notifications regarding screen updates, and CGDisplayCreateIm-
ageForRect() call to retrieve the pixel data. On Windows 7, we used
the DemoForge mirror driver [2] to collect pixmap updates. This
driver implements the Windows mirroring function [9]. The driver
intercepts and stores the boundaries of the 20,000 most recent up-
dates. Our analyzer polled the driver (every msec) to collect these
stored updates. It then memory mapped the mirror driver’s frame-
buffer copy to access the pixels that correspond to each pixmap
update. Thus, the updates are pushed to our analyzer by Mac OS X
while we use a polling model for Windows 7. We refer to each OS
setup for the C2D and i7 laptops as C2D-Win7, C2D-Mac, i7-Win7
and i7-Mac, respectively. Note that applications running on Mac
OS X and Windows 7 are optimized for direct display to the local
monitor. Their behavior is likely to be different from applications
that are optimized for network based X windows display system.

3.2 Activities analyzed
We capture screen pixmaps for the following operations.
• HD trailer: We played a full screen Avatar movie trailer

using Quicktime X player on Mac OS X and Windows Media
player on Windows 7. The H.264 trailer was 4:07 minutes
long and was encoded at 1920x1080 pixels, 23.98 fps for a
target bitrate of 9 Mbps. We refer to this scenario as Avatar.

• Presentation: We created a 1024x768 pixel resolution pre-
sentation using the Apple Keynote software and converted it
to PowerPoint format. We played these presentations using
Keynote on Mac OS X and PowerPoint on Windows 7. We
transitioned each slide after about 15 seconds. We refer to
these scenarios as Keynote and PowerPoint, respectively.

• Integrated Development Environment (IDE): We analyzed
the pixmaps created while developing our software instru-
mentation tools. We used Apple Xcode 4.0 on Mac and Vi-
sual Studio 2010 in Windows. These tools divide the screen
into rectangular regions and use them for code editing, file

browsing, function help and debugger outputs (Figure 1(a)).
We referred to them as Xcode and VS 2010, respectively.

• YouTube: We watched the 1080p HD “Big Buck Bunny” an-
imation clip (http://youtu.be/XSGBVzeBUbk), both
in the default browser spatial resolution as well as in full
screen mode using the Chrome browser. With the default
spatial resolution, YouTube displays flash advertisements as
well as comments and suggested videos around the video clip
(Figure 1(b)). While using full screen, advertisements were
overlaid on top of the clip. These scenarios are referred to as
YouTube and YouTube-FS, respectively.

• CNN.com: We browsed cnn.com using Chrome (referred as
CNN-Chrome). We read a whole article before skimming
over others. CNN extensively uses advertisement banners.

• Cityville game: Finally, we played the Adobe Flash based
Zynga Cityville game (at Level 66), in the native and full
screen resolution (referred as Cityville and Cityville-FS, re-
spectively). Cityville is a casual social city-building simu-
lation game (Figure 1(c)). AppData estimated 100 million
active players in January 2011. The game shows animations
of people loitering; the rate of such movement depends on
the rendering capabilities available to the browser.

4. RATE OF PIXEL GENERATION
Building a high performance real time screen sharing system re-

quires an understanding of the rate of pixel generation, the spatial
overlap between updates (§5) and the nature of the pixels (§6).

First we analyse the rate of pixel generation, the number of pixels
in each pixmap and the rate at which each pixmap is created. This
analysis helps choose between a design optimized to capture 24
full screen updates (to play a movie) vs another that captures 240
pixmaps, each of which has 1

10

th
the number of pixels per second.

For the various applications, we tabulate the mean and standard
deviation of the total number of pixels and updates per second in
Table 1. The total number of pixels varied between 0.6 and 34.0 on
C2D and between 1.5 and 49.9 on i7. Average update rate varied
between 9.6 and 50.1 for C2D and between 9.5 and 80.7 for i7. The
standard deviation of the update rates was high: e.g., PowerPoint
had a mean update rate of 40.1 and standard deviation of 64.0.

C2D and i7 should generate 38.9 and 52.9 Mpixels while re-
freshing the screen at 30 fps, respectively. Thus, the number of
pixels were less than would be generated for treating the screen as
a fixed frame rate (30 fps) movie: the rate of pixmap generation
was higher. The mismatch was pronounced for interactive scenar-
ios such as Xcode/VS 2010, Keynote/PowerPoint and CNN which
exhibited high update rates with a small number of updated pix-
els (<10K pixels). E.g., PowerPoint in Windows 7 generated 61.9
updates per second (σ: 113.5) and only 1.7 Mpixels per second.



scenario

Million pixels per second Updates per second
C2D i7 C2D i7

Mac Win7 Mac Win7 Mac Win7 Mac Win7
μ σ μ σ μ σ μ σ μ σ μ σ μ σ μ σ

Avatar 27.4 3.8 26.8 5.5 37.6 4.8 36.6 7.0 24.4 5.1 49.5 13.7 25.1 8.8 51.2 18.2
Cityville 10.1 3.6 10.0 1.5 12.2 4.2 18.2 2.6 30.8 11.8 41.9 23.8 52.3 18.8 63.2 39.6
Cityville-FS 25.3 8.1 20.4 4.4 42.3 10.3 47.8 7.1 22.4 16.1 47.1 41.5 30.1 21.8 47.9 36.0
CNN-Chrome 3.9 5.5 2.5 3.3 9.0 10.9 2.5 4.0 19.9 22.9 50.1 41.6 80.7 62.3 40.9 39.1
Keynote 5.5 1.9 6.2 3.2 9.6 13.6 9.5 13.4
PowerPoint 2.6 2.3 1.5 1.9 29.7 34.0 40.1 64.0
Xcode 2.0 2.8 1.6 2.1 13.1 14.6 16.3 16.4
VS 2010 0.6 2.2 1.7 5.9 37.8 39.4 61.9 113.5
YouTube 6.2 0.6 5.5 0.5 6.1 0.7 5.5 0.8 29.3 8.8 31.9 10.8 28.5 13.6 33.8 15.6
YouTube-FS 34.0 5.7 33.6 5.0 46.0 8.9 49.9 7.4 27.5 5.7 28.9 15.6 28.0 6.7 31.4 14.6

Table 1: Pixel generation characteristics

The 24 fps Avatar trailer created around 24 and 50 ups while us-
ing Mac OS X and Windows 7, respectively. The number of pixels
updated was around 27 and 37 Mpixels for Mac OS X and Win-
dows 7 with little variation in the number of pixels between the
two laptops. The Windows Media player was aggressively display-
ing partial frames as they were decoded. YouTube (video played
by Adobe Flash, both within the browser and in full screen mode)
did not exhibit much variation between the different operating sys-
tems or laptops. Cityville scenario required high update rates and
high number of updated pixels especially with Windows 7 requir-
ing more updates for the same number of updated pixels.

Next, we drill down on the number of pixels in each update as
well as the duration between updates.

4.1 Number of pixels in each update
For the various usage scenarios, we plot the cumulative distribu-

tion of the number of pixels in each update in Figure 2. For Avatar,
about 5% of the pixmaps contained less than 10,000 pixels. The re-
maining 95% of the pixmaps occupied 90% of the screen with Mac
OS X and 45% of the screen with Windows 7. This movie clip was
played by the Quicktime player on Mac OS X and by Windows Me-
dia player on Windows 7. In §4.2, we show that the rate of pixmap
creation was different between these scenarios. For YouTube-FS,
less than 4% of pixmaps on Mac OS X and 12% of the pixmaps on
Windows 7 were less than 10,000 pixels. The remaining pixmaps
updated the entire screen. When letterboxed, unlike Flash player,
Quicktime and Windows Media player only updated the active re-
gion. We describe its implications in §4.2.

Even though Cityville-FS used the Flash player plugin on both
operating systems, it produced different screen pixmap behavior.
On Windows 7, 50% and 65% of the updates were small while on
Mac OS X, only 20% and 10% of the updates were small with C2D
and i7 laptops, respectively. The flash plugin likely implements the
graphics primitives differently between the two OSs.

For Keynote, 55% and 65% of the updates were small on the
C2D and i7 laptops, respectively. While using PowerPoint, 75%
and 95% of the pixmaps were small using C2D and i7 laptops,
respectively. Similar results were observed for other scenarios as
well. In general, a faster processor allows for faster animation ex-
perience which manifests itself in many small updates. In §6.2, we
investigate the inter-update redundancy among these updates.

4.2 Duration between updates
Next we plot (Figure 3) a distribution of the duration between

pixmaps for the various usage scenarios. For Mac OS X, the dis-

crete nature of the durations (about 18 msec apart) is an artifact of
the OS policies for scheduling callbacks.

For Avatar, 49% of the pixmaps were sent 50 msec apart while
the remaining pixmaps were sent around 32 msecs apart with Mac
OS X. The movie was encoded at 24 fps, which corresponds to a
duration of 42 msec between frames; the screen pixmaps do not
correspond to constant frame creation rates. While using Windows
7, the screen pixmaps were equally distributed between 0 and 42
msecs apart. As we noted in Table 1, on average, this corresponds
to twice the frame rate as the encoded rate; Windows Media player
appears to progressively decode the movie. With Mac OS X and
YouTube-FS, 20%, 40% and 40% of the pixmaps were captured at
18, 32 and 50 msec apart, With Windows 7, 50% were received
about 42 msec apart while the remaining pixmaps were received
between 0 and 42 msec apart. Deducing whether the user is watch-
ing a movie by computing the pixmap update geometry and the rate
in which they are updated (similar to [11, 18]) would fail.

For interactive scenarios, Windows 7 creates updates at a furious
pace. With VS-2010, 20% and 40% of the updates were created
immediately after each other with the remaining 60% and 50% of
the updates were sent within 10 msec of each other for C2D and i7
laptops, respectively. The numbers were similar for PowerPoint in
which 60% of the updates were sent immediately and 95% of the
updates sent within 16 msec of each other. The remaining updates
were sent several seconds apart. For Xcode, between 40% and 50%
of the pixmaps were captured immediately after each other. These
values were similar for Keynote scenario as well.

To summarize, many applications generated large spikes of screen
updates during user interaction. Movies updated the screen at a
rate that was largely driven by the media object. However, some
movie players showed partially decoded frames. Animations are
GPU accelerated which adds to their visual appeal. However, they
generated pixmaps at a rate that was only limited by the available
computational resources. Improvements in processing power ex-
acerbate this trend. In all scenarios, the number of updated pix-
els was smaller than for treating the screen as a fixed frame rate
movie. Prior systems that used heuristics such as the update di-
mensions and rate to deduce information about the screen contents
(e.g., movie playback) were shown to be fragile.

5. SCREEN SHARING CONSTRAINTS
§4 showed the update rates for various usage scenarios. Storage

and network capacity limitations require compressing the screen
pixmaps (uncompressed, i7 requires 1.7 Gbps at 30 fps). How-
ever, the available computational capacity might not allow for com-
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Figure 2: Distribution of number of pixels in each update

pression at high capture rates, especially since this computational
need competes with processes that are simultaneously rendering to
the screen. Even when they are compressed, the network capacity
might be insufficient; e.g., Bob’s in-flight WiFi severely constrains
his ability to receive many updates from Emily’s cloud servers.

X windows applications reduce the network load by rendering
offline and then infrequently updating the screen. However, appli-
cations designed for desktop platforms (Mac OS X and Windows 7)
choose faster update rates (§4). Future trends portend to hardware
accelerated screen elements that generate even more updates.

Ideally, sharing systems will capture, compress and deliver the
updates at the rate in which they are generated. When resource
constraints make this infeasible, they can buffer all updates and
eventually transmit them (even if the pixels are super-ceded). This
buffering causes CPU, memory and network data spikes during ac-
tive durations. We investigate ways to address this mis-match.

5.1 Coalescing updates
One approach coalesces and creates a new screen update that

encompasses all unsent updates. Unlike disjoint updates, spatially
overlapping pixels are lost. The effect of this loss depends on the
application scenario. During Quicktime movie playback, a delay
in capturing a frame results in a lower frame rate video viewing
experience. As noted in §4, Windows Media player aggressively
displays partially decoded segments of a movie frame. Any de-
lay causes a low frame rate video viewing experience in which
each captured frame might consist of elements from multiple movie

frames. In a network constrained remote login scenario, we fre-
quently observed this effect while using VNC/RDP with Windows
Media playback from a Mac OS X (the MS RDP player for Mac
does not support media player redirection which masks this effect).
The pixels lost through spatial overlap also affects systems such
as [16] that analyze the screen using optical character recognition
techniques. Delaying and removing pixels causes these systems to
miss pixels that could be crucial for the recognition task.

We investigate spatial overlap using a fixed period in which all
updates are coalesced (similar to Camtasia and Quicktime). We
plot the percentage of unseen pixels for capture frequencies of 10,
15, 20, 24, 30, 60 and 100 ups while using Mac OS X and Windows
7 on i7 in Figure 4. For brevity, we highlight two representative sce-
narios: interactive (VS-2010 and Xcode) and video (YouTube-FS).
Applications using C2D created fewer updates and hence experi-
enced slightly lower number of lost pixels (not illustrated).

For YouTube-FS, slow capture rates of 20 ups, 15 ups and 10 ups
lost about 30%, 45% and 65% of the pixels, respectively. Capture
frequencies of 60 ups lost 5% of the pixels. Even though the Avatar
trailer was encoded at 24 fps, our analysis in §4.2 showed that the
updates were not always received at uniform intervals on Mac OS
X. Thus, from watching the Avatar trailer on Mac OS X, capturing
the update at 24 ups, sometimes, two updates are received within
the fixed capture duration leading to a loss of 50% of the pixels.
A higher frequency (e.g., 30 ups) reduces the percentage of unseen
pixels. On Windows 7, the media player doubles the rendering rate
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Figure 3: Distribution of duration between each update

to 50 ups. Capture frequencies of 20 ups, 15 ups, and 10 ups lose
about 18%, 38% and 59% pixels, respectively.

Scenarios in which screen updates were driven by user inter-
action (Xcode, VS 2010, Keynote, PowerPoint and CNN-Chrome),
there were durations in which lower capture rates were acceptable.
For example, presenters advance to the next slide and then discuss
the slide contents for several minutes with no further screen up-
dates. However, when the user interacted with the system, there
was a flurry of activity. For example, the Xcode scenario lost 20%
of the pixels even at a capture rate of 30 ups; we require a rate of
over 60 ups to capture all the pixels. For a Keynote presentation, the
updates were few and far between. However, Keynote extensively
uses GPU accelerated transitions. During a slide transition, a large
number of updates were created in a short duration; over 40% of
which can be lost for capture rates of 30 updates per second. Even
at 60 ups, 20% of the pixels were lost.

We observed little loss when choosing a capture rate of 100 ups.

5.2 Selectively choosing updates
Another approach could prioritize pixmaps and dynamically drop

low priority ones. Consider a sequence of updates u1, u2, u3, u4,
u10 and u20 using the notation that un was captured at time n.
When the resource availability could only sustain three updates,
we might choose u4, u10 and u20 instead of u1, u2, u20. In the
former case, we waited for the flurry of updates (u1, u2, u3 and
u4) to subside and then chose u4 while the latter case aggressively
sends all updates until resource limitation forces it to drop pixmaps.

The challenge is to perform these choices without application sup-
port, especially when multiple application elements with differing
requirements might be overlaid on the same screen. Note that sce-
narios such as Cityville continuously create fast updates; we require
a policy that waits for a certain duration before sending the next up-
date. Using our results in Figure 3, we investigate the duration that
we should wait before choosing an update for sharing.

§4.2 showed that Mac OS X delivered callbacks at intervals of
18 msec with many updates delivered immediately after each other.
Thus, waiting an additional msec after the callback achieves our
goal of picking the last update in an animation sequence. If the
pixmaps can be compressed and sent during the 18 msec interval
between callbacks, Mac OS X can sustain 60 ups.

Besides pixmaps which were delivered immediately after each
other, duration between updates varied uniformly for up to 50 msec
in Windows 7. Interactive scenarios delivered a majority of their
screen updates in a short duration. E.g., with i7, 90% and 95%
of the updates for VS 2010 and PowerPoint were delivered within
ten and 16 msec, respectively. For C2D, 90% of the pixmaps were
delivered within 16 msec. Hence, 16 msec is a reasonable duration
to wait to capture the end of an update flurry in Windows 7.

6. COMPRESSION IMPROVEMENT
Next, we investigate spatial and temporal similarity that is inher-

ent in the screen pixmaps. Compression algorithms achieve high
compression factors by exploiting both these forms of redundancy.
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Figure 4: Pixels occluded by coalescing updates

scenario Mac OS X Windows 7
Avatar 21.0:1 8.7:1
Cityville 5.3:1 5.1:1
Cityville-FS 3.2:1 2.8:1
CNN-Chrome 5.9:1 12.5:1
Keynote/PowerPoint 25.6:1 9.6:1
Xcode/VS 2010 23.2:1 21.4:1
YouTube 4.8:1 2.4:1
YouTube-FS 10.5:1 5.9:1

Table 2: Average Zlib compression factor

Note that screen pixmaps are heterogeneous; mechanisms [27] that
were developed for computer generated images need not always
achieve good compression factors.

6.1 Inter-update temporal similarity
First, we investigate the similarity between an pixmap and the

corresponding displayed pixels. We can avoid sharing fully re-
dundant updates. Partial redundancy requires further processing to
avoid sending those redundant pixels. Note that the screen capture
mechanism should minimize its share of CPU usage; precluding
motion vectors and other mechanisms that locate translated pixels.

6.1.1 Pixmap similarity metric
We measure the inter-update redundancy using a pixmap similar-

scenario
C2D i7

comp fps comp fps
Avatar 190.6:1 11.9 349.1:1 11.8
Cityville 252.0:1 11.1 171.5:1 14.0
Cityville-FS 102.9:1 11.1 84.9:1 12.6
CNN-Chrome 2283.0:1 7.1 2139.3:1 7.9
Keynote 5956.5:1 5.1 7797.7:1 5.1
Xcode 282.5:1 11.7 2432.3:1 7.3
YouTube 239.5:1 15.0 262.3:1 14.9
YouTube-FS 284.9:1 14.8 499.3:1 14.7

Table 3: H.264 screen capture with Quicktime

ity metric. For each pixmap, we calculate the percentage of pixels
that were the same as the corresponding displayed pixel. Thus,
a pixel similarity metric of 50 could mean that every other pixel
remained the same or the entire top half of the pixmap was simi-
lar. These two pixmaps could exhibit different compression perfor-
mance. We plot the cumulative distribution of the similarity metric
for the various usage scenarios in Figure 5.

For the Avatar trailer, 9% and 2% of the pixmaps had a similar-
ity metric of 100 while using Windows 7 and Mac OS X, respec-
tively. Even though Windows Media player doubled the pixmap
rate (§4.2), the pixmaps covered disjoint regions and did not trans-
late into a similarity metric of 50. Also, a larger share of pixmap
updates had less pixel similarity while using Windows 7 than with
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Figure 5: Pixel similarity from prior update

scenario
i7-Mac i7-Win7

alpha-0 alpha-255 RGB(5:6:5) bitmap alpha-0 alpha-255 RGB(5:6:5) bitmap

Avatar 39.3:1 39.0:1 46.9:1 89.3:1 14.1:1 12.1:1 14.1:1 35.1:1:1
Cityville 67.0:1 66.2:1 9.1:1 99.0:1 53.6:1 44.0:1 8.2:1 143.7:1
Cityville-FS 34.2:1 34.0:1 5.3:1 40.0:1 28.7:1 25.2:1 6.0:1 53.5:1
CNN-Chrome 49.5:1 48.5:1 11.7:1 80.1:1 49.2:1 39.3:1 18.0:1 134.0:1
Keynote/PowerPoint 35.8:1 36.0:1 50.6:1 42.9:1 23.8:1 20.5:1 13.3:1 43.9:1
Xcode/VS 2010 82.4:1 81.5:1 33.1:1 142.1:1 42.7:1 36.0:1 28.6:1 82.4:1
YouTube 16.6:1 16.5:1 10.9:1 28.1:1 7.8:1 6.9:1 4.5:1 12.7:1
YouTube-FS 44.6:1 44.6:1 20.8:1 104.0:1 12.9:1 10.8:1 10.3:1 29.2:1

Table 4: Compression factors for various pixmap transformations (followed by Zlib)

Mac OS X. For example, 66% of Mac OS X updates and 79% of
Windows 7 pixmaps had a pixel similarity metric of 25 or lower.

For all other scenarios, Windows 7 showed a higher similarity
metric than Mac OS X. For example, with Windows 7, between
80% (PowerPoint) and 97% (Cityville) of the pixmaps had a simi-
larity metric higher than 70. With Mac OS X, these values corre-
sponded to between 50% (CNN-Chrome) and 85% (Cityville-FS).
Windows 7 appears to create more updates, each of which were
temporally similar to prior updates at the same screen location.

6.2 Intra-update spatial redundancy
Next, we empirically investigate intra-update spatial redundancy

and its impact on compressing the update pixmaps using Zlib [14].
Zlib is a popular lossless compression mechanism that uses a vari-
ation of LZ77 [29] algorithm. It is widely available in a range
of computing platforms and is an inherent component of Java and
.NET. VNC uses Zlib for compressing screen updates.

We tabulate the average compression factor using Zlib for the
various application scenarios in Table 2. Higher compression fac-
tors are preferred. The compression factor depends on the applica-
tion scenario with better performance on Mac OS X (because of dif-
ferent compression quality vs CPU usage tradeoff, we use .NET 4.0
- DeflateStream()). Avatar achieves a compression factor of about
21:1 on Mac OS X and only 8.7:1 in Windows 7. YouTube and
YouTube-FS achieve twice the improvement on Mac OS X. Sce-
narios which require user interaction (e.g., PowerPoint, Keynote,
Xcode and VS 2010) achieve compression factors of about 20:1.
The improvements are more modest for other scenarios.

For comparison, we repeated the various scenarios and performed
an H.264 compressed screen capture using the Quicktime X player
on Mac OS X. We analyzed these compressed movies and tabulate

the compression factors as well as the frame rates achieved in Table
3. Each GOP on these H.264 encoded movies consist of a sequence
of IPBPBPBP frames. The compression factors were computed as
a factor of the compressed frame size (I, P or B frames) to the full
movie spatial dimension (ie, 1440x900 24 bit pixels for the C2D
laptop and 1680x1080 for the i7 laptop). Rather than naively com-
pressing the entire screen, it is likely that the Quicktime compressor
only considered changed pixel regions. Otherwise, the frame rate
would be constant irrespective of the usage scenario; we observed
a frame rate range between 5 and 20. Quicktime achieves compres-
sion factors between 84:1 and 6000:1. The Quicktime X player is
highly optimized to use the laptop GPUs. The captured movies are
also heavily compressed (lossy) using H.264 parameters.

Next, we investigate ways to improve the compression efficiency
for high capture rates using lossless Zlib.

6.3 Transformation for better compression
§6.2 showed the poor compressibility of screen pixmaps. Zlib

compression only uses intra-update redundancy. We improve com-
pression ratios by incorporating inter-update similarity (§6.1). We
also exploit the way pixels are represented in pixmaps. Screen
pixmaps are represented in a 32 bit RGBA format with opaque al-
pha value (0xFF). We make the temporally redundant pixel trans-
parent by setting the alpha value to 0x00. We can then change
the RGB values of these transparent pixels to any arbitrary value
that will improve the pixmap compression factor; we chose either
0x00 or 0xFF for alpha-0 and alpha-255, respectively. For ex-
ample, a high pixel similarity metric pixmap, will contain a large
sequence of 0x00FFFFFF with alpha-255 and 0x00000000 with
alpha-0. The receivers recover the original pixel values by alpha
compositing the transformed pixmap.



C2D i7
Mac Win7 Mac Win7

μ max σ μ max σ μ max σ μ max σ
Avatar 43.9 80.2 15.4 69.0 126.1 24.2 49.7 97.8 19.2 94.2 191.4 36.6
Cityville 5.6 24.4 4.6 41.5 52.7 10.5 6.5 27.9 6.2 65.7 78.5 13.7
Cityville-FS 5.1 27.5 4.6 44.1 54.1 9.3 9.0 36.1 4.0 65.6 95.2 12.0
CNN-Chrome 3.1 25.5 5.0 2.6 46.6 6.5 4.6 44.2 7.3 2.8 61.2 8.8
Keynote 0.1 5.4 0.5 0.2 15.7 1.3
PowerPoint 0.4 8.3 1.4 0.2 4.6 0.7
Xcode 0.6 6.1 1.3 0.5 12.4 1.2
VS 2010 1.0 12.1 2.1
YouTube 24.4 48.0 10.4 84.9 123.4 18.2 27.8 55.6 12.0 100.6 150.2 26.4
YouTube-FS 41.7 78.9 14.0 69.3 112.8 16.2 48.9 92.6 14.6 116.9 191.8 32.5

Table 5: Bandwidth consumed for bitmap encoding

C2D i7
Mac Win7 Mac Win7

μ max σ μ max σ μ max σ μ max σ
Avatar 4.0 59.0 6.5 8.9 91.0 9.6 4.1 73.0 8.1 10.2 122.0 13.7
Cityville 19.9 174.0 18.3 30.2 119.0 20.0 35.3 100.0 15.1 58.2 157.0 26.5
Cityville-FS 12.8 112.0 9.3 10.6 73.0 10.5 16.3 143.0 20.9 14.4 172.0 27.4
CNN-Chrome 20.8 134.0 26.6 11.8 188.0 26.7 47.2 175.0 54.5 21.3 117.0 18.8
Keynote 1.0 76.0 5.8 1.0 53.0 4.9
PowerPoint 2.7 115.0 13.8 3.6 240.0 21.4
Xcode 12.8 85.0 15.7 16.1 75.0 18.8
VS 2010 49.2 207.0 38.6
YouTube 41.1 82.0 11.8 52.1 163.0 8.7 40.5 108.0 11.7 31.9 156.0 16.9
YouTube-FS 4.9 87.0 8.5 4.8 219.0 16.1 4.8 112.0 11.2 5.7 114.0 11.6

Table 6: Frame rates achieved for bitmap encoding

We also investigated two other transformations. For bitmap, we
separated pixmaps into a similarity byte-map and pixel data. We
use 0x00 and 0xFF to represent similar and dissimilar pixels in the
byte-map, respectively. The pixel data is a sparse array that stores
the 24 bit RGB values of dissimilar pixels. We also considered a
lossy colormap transformation to RGB(5:6:5) format.

The transformed pixmaps were then Zlib compressed. For the
various pixmap transformations, we tabulated the average compres-
sion factor for i7-Mac and i7-Win7 scenarios in Table 4. The trans-
formations improved the compression factors achieved with Zlib
(Table 2) in all scenarios. For Mac OS X and Windows 7, we see
the best improvement in all scenarios for the bitmap transforma-
tion. alpha-0 provides the next best improvement except Avatar
where RGB(5:6:5) doubles the compression factor over Zlib.

For Avatar in Windows 7, the transformation only improved the
compression factor of 8.67:1 achieved by Zlib to 14.13:1, 12.06:1
and 35.08:1 for alpha-0, alpha-255, and bitmap transformations.
This improvement was similar for the YouTube-FS scenario, where
Zlib achieved a compression factor of 5.95:1, while the transforma-
tions improved them to 12.85:1, 10.79:1 and 29.22:1 for alpha-0,
alpha-255, and bitmap transformations, respectively.

Even though the computer generated animation of Cityville-FS
was unsuitable for Zlib (compression factor around 3:1), pixmap
transformations showed an order of magnitude improvement (40:1
for Mac OS X and 53:1 for Windows 7). These improvements still
dwarf the compression factors achievable with lossy H.24 compres-
sion (Table 3). On the other hand, we can achieve higher update
rates (discussed in more detail in §6.3.1).

We also showed that the transformations were more effective for
highly similar pixmaps (not illustrated for lack of space).

6.3.1 bitmap transformation performance
Bitmap uses the inter-update redundancy found in most scenar-

ios to improve Zlib performance. Next, we tabulate the mean, stan-
dard deviation and maximum bandwidth consumed as well as the
pixmap update rates achieved using a bitmap based screen sharing
system in Mac OS X and Windows 7 in Tables 5 and 6, respectively.

On average, the Avatar clip consumed about 47 and 80 Mbps
while achieving 4 and 10 ups on Mac OS X and Windows 7, re-
spectively. Since Windows Media player doubled the update rate,
this corresponds to a video playback rate of 5 fps. These values
were worse than the 9 Mbps and 24 fps achieved by Quicktime
screen capture. Similarly, YouTube-FS consumed about 45 and 100
Mbps to achieve a update rate of 4.9 and 5.2 for using Mac OS X
and Windows 7, respectively. The .NET 4.0 DeflateStream() sac-
rifices compression efficiency for computation overhead. Regard-
less, the CPU was the bottleneck in both scenarios. We are inves-
tigating ways to automatically detect movie playback and then en-
code movie pixmaps using hardware assisted H.264 encoding (AV
Foundation in Mac OS X and Intel Media SDK for Windows 7).

For Cityville-FS, we required 7 and 55 Mbps while achieving
on average 15 and 12.5 ups on Mac OS X and Windows 7 respec-
tively. However, the system achieved maximum pixmap rates of
172 ups while consuming 95 Mbps. Similarly, PowerPoint and
Keynote sometimes generated up to 240 and 76 ups. We captured
up to 86 updates for Xcode and 207 updates for VS 2010. The maxi-
mum bandwidth consumed for all scenarios was within the capacity
of IEEE 802.11n wireless network. The upcoming IEEE 802.11ac
also promises significant network capacity improvements.

Even though bitmap does not achieve the compression factors
achievable with H.264, it compresses them at a higher rate than



is even achievable with hardware assisted H.264 encoding. On a
wireless LAN network, this tradeoff of higher update rate while
using more network bandwidth was acceptable.

7. IMPLEMENTATION EXPERIENCE
Based on the observations described in this paper, we have built

and deployed a DisplayCast system [13] for screen capture and dis-
tribution. Native implementations in Mac OS X and Windows 7
provide utilities to capture the screen, play them back in real time
as well as archive them to a H.264 movie. The various components
locate each other using Zeroconf [28]. We provide a HTTP/REST
API to control the system. Our system is open sourced.

8. DISCUSSION
We empirically analyzed the performance of pixmap screen cap-

ture and showed that the capture rates need to be as high as hundred
ups for interactive scenarios. Moore’s law advancement in proces-
sor capability as well as recent trends of using hardware assisted
screen artifacts further exacerbates these rates. We offer practical
guidelines for adapting to lower capture rates under resource con-
strained environments. We devised a simple mechanism to trans-
form inter-update temporal redundancy into intra-update spatial re-
dundancy in order to achieve good compression factors and high
capture rates. We incorporate our findings into a practical and open
sourced system that works in Mac OS X and in Windows 7 [13].

Newer operating systems such as Mac OS X Mountain Lion [1]
and Windows 8 [8] are introducing tablet inspired features such as
swiping, pinching, zooming and other operations that are invoked
using multi-touch gestures. These operations make extensive use of
hardware acceleration capabilities that are built into modern com-
puters. Though these features improve the user experience, they
generate enormous amounts of screen updates. For example, a full
screen swipe that is tied to the rate in which the user flips the track-
pad generates a full screen update that shifts the entire screen by
one pixel. High resolution retina displays can also increase the
number of pixels in each update. There is a need to implement
higher capture rates to avoid losing pixels on these newer systems.
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