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Abstract— The recent proliferation of streaming multimedia 

on a variety of mobile devices has severely tested their battery 
lifetime. The long running nature of typical streaming 
applications results in significant energy consumption by the 
wireless network interface card (WNIC) in these mobile devices. 
In this paper we explore linear prediction-based client-side 
strategies that reduce the WNIC energy consumption to receive 
multimedia streams by judiciously transitioning the WNIC to a 
lower power consuming sleep state during the no-data intervals 
in the multimedia stream, without explicit support from the 
multimedia servers themselves. Experimental results on popular 
streaming formats such as Microsoft Media, Real and Apple 
QuickTime show that a linear prediction-based strategy 
performs better than history-based strategies that use simple 
temporal averaging. 
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I. INTRODUCTION 
HE recent proliferation of multimedia capable mobile 
computing devices and networking technologies have 
created enormous opportunities for mobile device users to 

communicate with one another using multimedia streams. A 
necessary criterion for the mass acceptance of mobile devices 
is acceptable battery life of these devices. There has been 
dramatic improvement in energy-aware design of systems, 
both, in terms of hardware and software. Unfortunately, 
advances in hardware and software are not matched by a 
corresponding increase in battery life. Thus, the usefulness of 
these mobile devices in watching and/or hearing streaming 
multimedia is restricted by battery capacity. Future trends in 
battery technology do not promise dramatic improvements in 
battery capacity that will make this issue disappear. 
Consequently, hardware or software solutions need to be 
developed at the system or application level to prolong battery 
life. 

Previous work on power management for mobile devices 
includes spin-down policies for disks [5-8], scheduling 
policies for reducing CPU energy consumption [9,10] and 
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managing wireless communications [11-14]. An IEEE 
802.11b Wi-Fi connection is a popular way for mobile 
consumers to access the Internet wirelessly. The energy 
consumption of the wireless network interface can be 
significant, especially for smaller devices. Since media 
streaming applications are typically long running, the power 
consumption of these applications needs to be taken care of. 
Early work by Stemm et al. [2] reports that the network 
interface draws a significant amount of power. Although 
dependent on the specific machine and wireless device, the 
energy consumption of wireless communication devices can 
represent over 50% of total system energy consumption for 
current handheld computing devices and up to 10% for high-
end laptops [2]. Feeney et al. [18] also report the energy 
consumption measurements of an IEEE 802.11b WNIC in an 
ad hoc networking environment and show that the energy 
consumption of the IEEE 802.11b WNIC has a complex range 
of behavior. Hence, it is important to look at techniques to 
reduce the energy consumed by the network interface used to 
download the multimedia stream.  

The energy consumption rates of a wireless network 
interface card (WNIC) in the sleep state and in the receive, 
transmit or idle states are substantially different. Fig. 1 shows 
the power consumption rates of two popular WNIC’s in the 
various aforementioned states [3]. The WNIC’s energy 
consumption rate when receiving, transmitting data or when 
idling is substantially higher than when sleeping. Note that the 
WNIC cannot transmit, receive or buffer data in the sleep 
state.  
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Fig. 1.1 Energy Consumption Rates of Two WNIC’s in Various States 
 Lorch et al. [15] present a survey of software techniques for 
energy management. Havinga et al. [16] present an overview 
of energy management techniques for multimedia streams. 
Aggarwal et al. [17] describe techniques for processing video 
data for transmission under low power situations. A popular 
strategy to reduce the energy consumption of wireless network 
devices is by switching them to the lower power sleep state. 
Systems employing a strategy which enables switching of the 
WNIC to a low power consumption sleep state can achieve 
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energy savings whenever possible without modifying the 
underlying application and without user-visible latency. 
Frequent switching to a low power consumption state also 
promises the added benefit of allowing the batteries to 
recover, thus exploiting the battery recovery effect [4]. 

Media transcoding is a popular strategy used to reduce the 
stream fidelity. This strategy reduces the stream size, and 
hence reduces the amount of network traffic. Reducing the 
network traffic has the potential of reducing the total energy 
consumed. However, if care is not taken to return the WNIC 
to the low power-consuming state for as often and as long as 
possible, reducing the amount of transmitted data will have a 
negligible effect on the overall client energy consumption. 

The basic principle underlying the proposed energy-saving 
approach is to predict the time durations during which to 
suspend communication by switching the WNIC to a sleep 
state. Our analysis of typical streams shows that the WNIC 
spends most of the time waiting for stream packets in a higher 
energy consuming idle state. Even for a high bandwidth 
2000Kbps stream, the WNIC spends over 56% of the time in 
the idle state; illustrating the potential for significant energy 
savings. Our policies operate on the multimedia client without 
explicit coordination or help from the multimedia server. 
Multimedia/video data is typically transmitted in the form of 
bursts of data packets with no-data periods between 
successive bursts. The bursty nature of the traffic is a 
consequence of the media streaming format and other 
network-related factors such as available network bandwidth, 
the buffering mechanism of the wireless access point and the 
traffic congestion control mechanism.  Also, the bandwidth 
requirement of the multimedia stream is typically much less 
than what is provided by IEEE 802.11b, thus causing 
multimedia data traffic  to appear bursty. The WNIC can be 
switched to its sleep state during these no-data intervals in 
order to save energy. Since we operate without explicit 
coordination with the server, this energy conservation strategy 
requires proper estimation of the time interval during which 
no data is expected to be received. If the WNIC is suspended 
too often or for too long a time duration during the wrong 
time periods, the users will miss the data sent to this client. On 
the other hand, if the WNIC is not suspended long and 
frequently enough, savings in energy consumption may not be 
appreciable. 

Chandra [1] describes a client-side history-based scheme 
that transitions the WNIC to a power saving sleep state during 
the no-data intervals of a multimedia stream. The history-
based scheme predicts the length of the next no-data interval 
by computing the average of the lengths of the past k 
successive no-data intervals. The Microsoft Media format was 
observed to benefit immensely from this client-side history-
based scheme on account of the fact that Microsoft Media 
transmits large data packets at fairly regular time intervals. 
The benefits in the case of the Real and Apple QuickTime 
media formats were less apparent on account of the fact that 
the no-data time interval lengths were less regular. The work 
in this paper is a refinement of the client-side history-based 
scheme presented in [1]. Specifically, we present a statistical 
linear prediction-based strategy to predict the occurrences and 
lengths of the no-data time intervals. These predictions are 

used to select the time periods during which the 
communication is suspended (i.e., the WNIC is powered down 
to its sleep state) in a client-server environment where 
multimedia streams are being transmitted from a server to a 
mobile, power-constrained client. 

The remainder of the paper is organized as follows. In 
Section II, we describe the proposed linear prediction-based 
scheme and present a brief outline of the history-based scheme 
proposed in [1] in the context of energy aware multimedia 
data streaming. In Section III, we describe the experimental 
setup, evaluation methodologies, measurement metrics and 
experimental results that compare the performance of the 
proposed linear prediction-based scheme with that of the 
history-based scheme. In Section IV, we provide a detailed 
interpretation of the experimental results. In Section V, we 
conclude the paper and outline directions for future research. 

 

II. LINEAR PREDICTION-BASED APPROACH 
In a client-server wireless network environment, data 

packets are transmitted by the server in the form of discrete 
bursts, as shown in Fig. 2.1. This behavior is dependent on the 
particular multimedia streaming format used; for this work, 
we use the unmodified streaming formats of the Microsoft 
Media, Real and Apple QuickTime multimedia servers using 
the UDP protocol. Chandra [1] provides more details on the 
video data transmission statistics. Between two successive 
bursts there is a time interval during which there is no data 
being transmitted by the server. We refer to this time interval 
as the no-data interval. In Fig. 2.1, the lengths of the two no-
data intervals are 12 tt −  and 34 tt −  respectively. The sequence 
of these no-data interval lengths can be looked upon as a time 
series. Empirical observations suggest that the length of a no-
data interval bears statistical correlation to previously 
observed no-data interval lengths. This provides the 
motivation for the formulation of a client-side statistical linear 
prediction-based scheme to predict future no-data interval 
length values based on previous observations. 

 
Fig. 2.1 Simplified Stream Packet Transmission in a Wireless Network 

Linear prediction is a mathematical operation where a 
future value of a time series is estimated as a linear function of 
previously observed samples [19]. A common representation 
of the linear prediction model is given by: 
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where )(' nx  is the estimated or predicted no-data interval 
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length values, and sai

'  are the predictor coefficients. The error 
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)(')()( nxnxne −=                  (2.2) 
where )(nx  is the true no-data interval length value and )(' nx  
the predicted value of the no-data interval length. A linear 
predictor optimizes the estimate by minimizing the estimation 
error. The two adjustable parameters of a linear prediction 
model are the model order p and the width of the  time 
window used for training. The algorithm used in our approach 
is the one proposed by Burg [20]. The appropriate values of p 
and the width of the training time window are chosen 
empirically. 

In a client-server wireless network environment, if the 
predicted lengths of the no-data intervals are frequently longer 
than the actual ones, the user will experience packet losses in 
the data stream being downloaded because many data packets 
arrive at the client’s WNIC while it is in the sleep state. On 
this account, it is useful to add a relatively small negative bias 
to the sleep interval lengths predicted by the linear prediction 
algorithm in order to lower the data drop rate. This ensures 
that the client’s WNIC is transitioned to the idle state before 
the next data packet arrives. Thus, the biased estimate of the 
no-data interval length is given by 

∑
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where )(' nxb  is the biased prediction of the no-data time 
interval length. However, if the bias B is too large in 
magnitude, the resulting savings in battery energy may not be 
appreciable.  

The history-based prediction scheme described in 
Chandra’s previous work [1] predicts the no-data interval 
length by averaging the observed no-data interval lengths over 
the past k receive-idle cycles. It also varies the dependence of 
the prediction on past history by offsetting the predicted no-
data interval length with a bias B as follows: 
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Note that the history-based prediction scheme can be 
looked upon as a special (i.e., degenerated) case of the linear 
prediction scheme where all the predictor coefficients are 
identical. 

III. EXPERIMENTAL SETUP 

A. System Description 
The experimental system consists of a multimedia server 

with a wireless access point, and a mobile client with a 
wireless network interface card (WNIC). The mobile client 
has a client-side proxy that is responsible for transitioning the 
WNIC to a low-power consumption sleep state during the 
predicted no-data time intervals. Ideally, since no data 
transfers are expected during the no-data time interval, there 
should be no loss of data. The traffic between the multimedia 
server’s wireless access point and the mobile client is 
monitored by a monitoring station, which records the traffic 
flow in trace files. The multimedia stream used for our 
experiment is the Wall theatrical trailer. The Wall trailer is 

1:59 minutes long and is digitalized to a high quality video 
stream.  
 

 
Fig. 3.1 Experimental Setup 

Simulation of the client-side proxy is done using a typical 
WNIC power consumption model. We use the following 
published power parameters of a Wavelan 2.4 GHz wireless 
network interface card [16]; sleep state: 177 mw, idle state: 
1319 mw, receive state: 1425 mw and transmit state: 1675 
mw. We assume that the transition from the sleep state to idle 
state takes 250 µseconds and the wireless network provides a 
useful bandwidth of 4 Mbps. 

B. Performance Metrics 
In order to measure the efficiency of our approach, the 

following performance metrics are used. 
Total Energy Consumed: This is defined as the total amount 

of energy consumed (in mJoules) by the client-side WNIC to 
receive the streaming video data transmitted by the 
multimedia server. The goal is to minimize this metric when 
the client-side WNIC receives a video clip. 

Energy Consumed per KB Received: This is defined as the 
amount of energy consumed (in mJoules) per Kilobyte of data 
received by the client-side WNIC. The goal of our experiment 
is to minimize this metric. As we will see in Section 4, due to 
the inaccuracy of client-side prediction, some of the streaming 
video data packets transmitted by the multimedia server will 
be dropped.  This metric measures the energy efficiency of the 
client-side WNIC in terms of the energy expended for the 
amount of useful data it has received. 

Drop rate: This is defined as the percentage of data dropped 
due to longer-than-actual predicted no-data interval lengths. 
The goal of our experiment is to minimize this metric as well. 
 

IV. EXPERIMENTAL RESULTS 
We use the wireless traffic trace files obtained by the 

monitoring station to perform the simulation. A WNIC cannot 
receive or buffer data when it is in the sleep state. If the 
predicted sleep interval is shorter than the actual one, the 
client-side WNIC wakes up at the end of predicted sleep 
interval and transitions to an idle state, ready to receive the 
burst of data packets. If the predicted sleep interval is longer 
than the actual one, the client-side WNIC sleeps through the 
end of the estimated sleep interval. Depending on the time 
when the WNIC wakes up, part of or the entire burst of data 
following the actual no-data interval is considered to be lost. 
In our experiments, we use the Wall theatrical trailer that is 
digitized to a high quality video stream. The Microsoft Media, 
Real and Apple QuickTime streaming formats are each used 
for the wireless transmission of the stream. Experimental 
measurements of the energy metric and drop rate are made as 
the value of the negative bias B is systematically varied. 
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To describe the power consumption model used to calculate 
the client-side WNIC energy consumption, we use the 
simplified stream data transmission model shown in Fig. 2.1. 
The power consumption of the WNIC in each of the four 
states, i.e. sleep, idle, receive and transmit is denoted by sleepP , 

idleP , receiveP  and transmitP  respectively. The predicted idle 
period is denoted by pT , and the energy consumption of the 
WNIC is denoted by EC . Then the predicted sleep period 
falls in one of the following three cases, as shown in Fig. 4.1.  

Case 1: 12 ttTp −≤ , i.e. the predicted sleep period is shorter 
than or equal to the actual sleep period. During the time period 

pT  the WNIC’s energy consumption is given 
by mWTPT psleepp 177×=× . The WNIC then wakes up and 
persists in the idle state until time instant 2t . The WNIC’s 
energy consumption during this period is given 
by mWTttPTtt pidlep 1319)()( 1212 ×−−=×−− . During the time 
period from 2t  to 3t , the WNIC receives data packets 
resulting in energy consumption given by 

mWttPtt receive 1425)()( 2323 ×−=×− . After having received the 
data burst, the WNIC goes back to the sleep state until the end 
of the next predicted sleep period. Hence the energy 
consumption in this case is given by 

receividlepsleepp PttPTttPTEC ×−+×−−+×= )()( 23121              (4.1) 
Case 2: )( 12 ttTp −> and )( 13 ttTp −≤ , i.e. the predicted sleep 

period is longer than the actual no-data period but shorter than 
or equal to the no-data period plus the data transmission 
period. In this case, during the predicted sleep period pT , the 
WNIC energy consumption is given by 

mWTPT psleepp 177×=× . Since the WNIC wakes up in the 
middle of data burst, part of the data in the burst is dropped. 
To receive the remainder of the data in the burst, the energy 
expended by the WNIC is given by 

mWTttPTtt preceivep 1425)()( 1313 ×−−=×−− . After having 
finished receiving the data burst, the WNIC goes back to the 
sleep state until the end of the next predicted sleep period. The 
total energy consumption in this case is given by 

receivepsleepp PTttPTEC ×−−+×= )( 132          (4.2) 
Case 3: 13 ttTp −> , i.e. the predicted sleep period is too 

long. Consequently the WNIC wakes up during the next no-
data interval and the data transmitted during the period ],[ 32 tt  
is dropped. The WNIC persists in the idle state until the 
beginning of the following data burst. During the predicted 
sleep period pT , the WNIC’s energy consumption is given by 

mWTPT psleepp 177×=× . The WNIC then persists in the idle 
state until the beginning of the next data burst. The energy 
consumption during this period is given by 

mWTttPTtt pidlep 1319)()( 1414 ×−−=×−− . The energy 
consumption in this case is given by 

idlepsleepp PTttPTEC ×−−+×= )( 143           (4.3) 
 

 
Fig. 4.1 The Predicted No-data Period and the WNIC Energy Consumption 
Model 

We compare the WNIC energy consumption results 
obtained using the linear prediction-based approach and the 
history-based approach described in [1]. The results presented 
in this section are obtained when the Wall video segment is 
transmitted by the multimedia server in the Microsoft Media, 
Real and Apple QuickTime streaming formats. The 
multimedia server transmission bandwidth is set to result in a 
streaming bandwidth of 256Kbps and 512Kbps. The nature of 
the data bursts resulting from each of the aforementioned 
streaming formats is depicted in Figures 4.2(a), 4.3(a) and 
4.4(a). As pointed out by Chandra [1], due to differences in 
the characteristics of the underlying media stream formats, the 
time series comprising of the lengths of the no-data intervals 
between successive data bursts exhibit different statistical 
properties. The Microsoft Media server transmits large data 
packets at fairly regular intervals. The Real and Apple 
QuickTime players tend to exhibit greater variation in the 
packet sizes and inter-packet arrival times. Figures 4.2(b), 
4.3(b) and 4.4(b) show the histograms of the no-data interval 
lengths for each of the above streaming formats. To compare 
the performance of the history-based and linear prediction-
based approaches, the histograms of the predicted no-data 
interval lengths obtained using the history-based approach and 
the linear prediction-based approach are presented in Figures 
4.2(c), 4.3(c) and 4.4(c) and Figures 4.2(d), 4.3(d) and 4.4(d) 
respectively for each of the aforementioned streaming 
formats. A comparison of the distribution of the actual no-data 
interval lengths and the distributions of the predicted no-data 
interval lengths for each of the three streaming formats shows 
that the linear prediction-based approach yields no-data 
interval length distributions that are much closer to the actual 
distributions when compared to the history-based approach. 
When the distribution of the no-data interval lengths spans a 
broad range, the history-based approach is observed to be 
incapable of preserving the statistical properties of the actual 
no-data intervals.  
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Fig. 4.2(a) Data Burst Intervals for Microsoft Media Streaming Data at 
256Kbps 
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Fig. 4.2(b) No-data Interval Length Histogram for Actual Data, Microsoft 
Media Format at 256Kbps 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

100

200

300

400

500

600

700

Time (Second)

N
um

be
r o

f N
o-

da
ta

 In
te

rv
al
s

 
Fig. 4.2(c) No-data Interval Histogram, History-based Estimation, Microsoft 
Media Format at 256Kbps 
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Fig. 4.2(d) No-data Interval Length Histogram for Linear Prediction-based 
Estimation,Microsoft Media Format at 256Kbps 
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Fig. 4.3(a) Data Burst Intervals for Real Streaming Data at 512Kbps 
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Fig. 4.3(b) No-data Interval Length Histogram for Actual Data, Real Format 
at 512Kbps 
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Fig. 4.3(c) No-data Interval Length Histogram, History-based Estimation, 
Real Format at 512Kbps 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

100

200

300

400

500

600

 
Fig. 4.3(d) No-data Interval Length Histogram, Linear Prediction-based 
Estimation, Real Format at 512Kbps  
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Fig. 4.4(a) Data Burst Intervals for Apple QuickTime Streaming Data at 
256Kbps 
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Fig. 4.4(b) No-data Interval Length Histogram for Actual Data, Apple 
QuickTime Format at 256Kbps 
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Fig. 4.4(c) No-data Interval Length Histogram, History-based Estimation, 
Apple QuickTime Format at 256Kbps 
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Fig. 4.4(d) No-data Interval Length Histogram, Linear Prediction-based 
Estimation, Apple QuickTime Format at 256Kbps 

The values of the energy metric for the history-based and 
linear prediction-based approaches are compared for a given 
value of the drop rate. In order to obtain a fair comparison, the 
number of previous observations (number of previous actual 
no-data intervals) used in the estimation is set to be the same 
for both, the linear prediction-based approach and the history-
based approach. The graphs in Figures 4.5 - 4.7 plot the 
client-side WNIC total energy consumption versus the drop 
rate. The magnitude of the negative bias added to the value of 
the predicted sleep interval length is indicated near the 
corresponding data point in each figure. Experiment results 



MM000705 
 

6

show that the linear prediction-based approach yields a lower 
total WNIC energy consumption compared to the history-
based approach, for a given value of the drop rate when the 
number of previous observations used is the same. Moreover, 
when no negative bias is added, the linear prediction-based 
approach always yields a better performance than the history-
based approach in terms of the drop rate and the total WNIC 
energy consumption. This implies that, statistically speaking, 
the linear prediction-based approach estimates the sleep 
interval length values for the client-side WNIC more 
accurately than does the history-based approach. 
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Fig. 4.5 Total WNIC Energy Consumption vs. Drop Rate, Results of the 
Linear Prediction-based Approach, and History-based Approach, Microsoft 
Media Format at 256Kbps. 

 80

 90

 100

 110

 120

 130

 140

 0  10  20  30  40  50

To
ta

l E
ne

rg
y 
C
on

su
m

ed
 (m

J)

Drop Rate (%)

Real Stream AT 512K
Total Energy Consumption vs Drop Rate

0.0

0.004

0.008

0.012

0.016

0.0
0.004

0.008

0.0
0.004

0.008

LP-Based, P=6, Bias 0 ~ 0.2
LP-Based, P=18, Bias 0 ~ 0.2

History-Based, P=6, Bias 0 ~ 0.2
History-Based, P=18, Bias 0 ~ 0.2

 
Fig. 4.6 Total WNIC Energy Consumption vs. Drop Rate, Results of the 
Linear Prediction-based, and History-based Approach, Real Format at 
512Kbps. 
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Fig. 4.7 Total WNIC Energy Consumption vs. Drop Rate, Results of the 
Linear Prediction-based Approach, and History-based Approach, Apple 
QuickTime Format at 256Kbps. 

When a WNIC is in the sleep state, it neither can receive 
nor buffer the incoming data. Consequently, if the estimated 
sleep interval length is longer than its actual value, the client-
side WNIC persists in the sleep state when the data burst 
arrives. Accordingly, this burst of data is considered lost. It is 
useful to decrease the data drop rate with a properly chosen 
negative bias that is added to the estimated length of the no-
data interval. For a fixed magnitude of negative bias, the more 
accurate the estimation, the higher the percentage of predicted 
sleep intervals that are shorter than their actual counterparts. 
From Figures 4.5 - 4.7, we can see that for the same 
magnitude of negative bias that is added to the predicted sleep 
period, the linear prediction-based approach results in a lower 
data drop rate compared to the history-based approach. This 
can be attributed to the fact that the sleep interval length value 
estimated by the linear prediction-based approach lies within a 

smaller neighborhood about the actual sleep interval length 
value. With the addition of a negative bias of relatively small 
magnitude, most of the estimated sleep intervals are observed 
to lie within their actual counterparts in the case of the linear 
prediction-based approach, thus resulting in a relatively low 
drop rate.  

With no negative bias added to the predicted sleep interval 
length values, there is a higher probability that the predicted 
values of the sleep interval lengths are longer than their actual 
counterparts. Some of the predicted values are so long that 
entire data bursts are dropped by the client-side WNIC, as 
indicated by Case 3 in Fig. 4.1. In this situation, the client-
side WNIC wakes up during the no-data interval, and persists 
in the idle state until the following data burst. The WNIC 
energy consumption in this situation is defined by equation 
(4.3). The energy consumed by the client-side WNIC during 
its idle state is given by 

mWTttPTtt pidlep 1319)()( 1414 ×−−=×−−  (Fig. 4.1). Since the 
power consumption of the WNIC in the idle state is higher 
than in the sleep state if the no-data intervals between data 
bursts are long, the energy consumption due to overestimation 
of the sleep interval is large. A small amount of negative bias 
applied to the predicted values of the sleep interval lengths 
can reduce the probability of overestimation as defined by 
Case 3 (Fig. 4.1) and therefore reduce the client-side WNIC 
power consumption and also the drop rate. The Microsoft 
Media and the Apple QuickTime streaming formats are 
characterized by long no-data intervals accompanying 
relatively short data bursts. As shown in Fig. 4.5, in the case 
of the Microsoft Media format, when the bias magnitude lies 
in the range [0, 0.006], the total client-side energy 
consumption and the data drop rate exhibit a decreasing trend 
with increasing value of the bias magnitude for the history-
based approach. As shown in Fig. 4.7, a similar trend can be 
observed in the case of the Apple QuickTime format when the 
bias magnitude values are in the range [0, 0.01] for the linear 
prediction-based approach that uses 18 previous observations. 

When the bias magnitude value is chosen large enough such 
that all the predicted no-data interval length values comply 
with Case 2 (Fig. 4.1), then increasing the bias magnitude 
value results in a greater amount of data received by the 
client-side WNIC (i.e., a lower drop rate) at the expense of 
increased energy consumption. This explains the trend where 
the drop rate decreases but the total WNIC energy 
consumption increases with increasing bias magnitude value. 
This trend can be observed in Fig. 4.6 in the case of the Real 
format for both, the history-based approach and the linear 
prediction-based approach. A similar trend can be observed in 
the case of the Apple QuickTime format (Fig. 4.7) for the 
history-based approach and for the linear prediction-based 
approach when the bias magnitude value is greater than 0.01. 
However, once the bias magnitude value crosses a certain 
threshold value such that all the predicted no-data interval 
length values comply with Case 1 (Fig. 4.1) then any further 
increase in the bias magnitude value only increases the total 
WNIC energy consumption (since the client-side WNIC 
spends more time in the idle state waiting for the data burst to 
be received) without any decrease in the drop rate. This trend 
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can be clearly observed in the case of the Microsoft Media 
format (Fig. 4.5), for the history-based approach when the 
bias magnitude value exceeds 0.12 and for the linear 
prediction-based approach when the bias magnitude value 
exceeds 0.01. In the limiting case when the bias magnitude 
value equals the longest actual no-data interval length, the 
client-side WNIC will be in the idle or receive state for the 
entire duration of the streaming session. This is tantamount to 
the complete absence of any client-side prediction scheme. In 
this case the energy metric values for both, the history-based 
approach and the linear prediction-based approach converge 
to same point, which corresponds to the absence of any client-
side prediction whatsoever. 

In order to compare the energy efficiency of the client-side 
WNIC when receiving video streams in different formats, the 
energy consumption of the client-side WNIC per KByte of 
data received is plotted as a function of the drop rate for all 
the three media streaming formats for both, the history-based 
approach and the linear prediction-based approach (Figures 
4.8 - 4.10). The graphs in Figures 4.8 - 4.10 do not exhibit the 
same consistency as their counterparts in Figures 4.5 - 4.7 in 
terms of monotonicity of the function. This can be explained 
with the following analysis. If the total energy consumption of 
the client-side WNIC, totalEC  (which is plotted versus the drop 
rate in Figures 4.5 - 4.7), is expressed as a function of the drop 
rate as follows: 

)_( ratedropfECtotal =                   (4.4) 
then the energy consumed by the client-side WNIC for each 
KByte of data received, denoted by KByteEC , is given by 

)_1(
)_(

ratedropB
ratedropfECKByte −×

=               (4.5) 

where B is the amount of data transmitted in the video stream. 
From equation (4.5) it can be observed that even if 

)_( ratedropf  is monotonic with respect to ratedrop _ , 
KByteEC  can still be non-monotonic with respect to ratedrop _ . 

Nevertheless, the value of KByteEC  in the case of the linear 
prediction-based approach is observed to be much lower than 
that in the case of the history-based approach for a given value 
of ratedrop _  for all the three streaming media formats 
(Figures 4.8 - 4.10). Conversely, the drop rate in the case of 
the linear prediction-based approach is observed to be much 
lower than that in the case of the history-based approach for a 
given value of KByteEC  for all the three streaming media 
formats (Figures 4.8 - 4.10). This shows that the linear 
prediction-based approach is more energy efficient than the 
history-based approach regardless of the streaming media 
format.  
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Fig. 4.8 Energy Consumption per KByte of Data Received, Results of 
History- & Linear Prediction-based Approaches, Microsoft Media Format at 
256Kbps 
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Fig. 4.9 Energy Consumption per KByte of Data Received, Results of History- 
& Linear Prediction-based Approaches, Real Format at 512Kbps 
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Fig. 4.10 Energy Consumption per KByte of Data Received, Results of 
History- & Linear Prediction-based Approaches, Apple QuickTime Format at 
256Kbps 

V. CONCLUSIONS 
The wireless network interface card (WNIC) of a mobile 

computing device accounts for a significant percentage of the 
overall client power consumption. In this paper, we have 
shown how linear prediction can be used to predict the length 
of the sleep time intervals for the client-side WNIC in order to 
reduce its energy consumption. The prediction model is 
trained using previously observed no-data intervals for a 
multimedia traffic stream. Experimental results show that, for 
a given value of additive (negative) bias, the statistical linear 
prediction-based approach yields, simultaneously, a lower 
data drop rate and a lower energy metric when compared to 
the history-based approach. In fact, the history-based 
approach can be looked upon as a special (i.e., degenerate) 
case of the linear prediction-based approach where all the 
predictor coefficients are identical in value.  

Different popular multimedia streaming formats exhibit 
different data streaming characteristics. The Real and the 
Apple QuickTime media streams exhibit greater variation in 
the data packet sizes and inter-packet arrival times when 
compared to the Microsoft Media streams. This makes it hard 
for the prediction algorithm to reliably predict the lengths of 
no-data intervals. Nevertheless linear prediction-based 
approach is shown to be more robust than the history-based 
approach in its ability to predict the lengths of the no-data 
intervals, for all the three popular media stream formats 
explored in this work, namely Microsoft Media, Apple 
QuickTime and Real. 

Future research will investigate more sophisticated time 
series modeling and prediction methods. Problems scenarios 
where both the server and the client are power constrained 
(such as in a peer-to-peer ad-hoc mobile network) will also be 
investigated. 
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