
Towards portable multi-camera high definition video capture using smartphones

Surendar Chandra, Patrick Chiu and Maribeth Back
FX Palo Alto Laboratory Inc.

3174 Porter Drive, Palo Alto, CA 94304
surendar@acm.org, chiu@fxpal.com, back@fxpal.com

Abstract—Real-time tele-immersion requires low latency and
synchronized multi-camera capture. Prior high definition (HD)
capture systems were bulky. We investigate the suitability
of using flocks of smartphone cameras for tele-immersion.
Smartphones integrate capture and streaming into a single
portable package. However, they archive the captured video
into a movie. Hence, we create a sequence of H.264 movies
and stream them. Capture delay is reduced by minimizing
the number of frames in each movie segment. However, fewer
frames reduces compression efficiency. Also, smartphone video
encoders do not sacrifice video quality to lower the compression
latency or the stream size. On an iPhone 4S, our application
that uses published APIs streams 1920x1080 videos at 16.5 fps
with a delay of 712 ms between a real-life event and displaying
an uncompressed bitmap of this event on a local laptop.
Note that the bulky Cisco Tandberg required 300 ms delay.
Stereoscopic video from two unsynchronized smartphones also
showed minimal visual artifacts in an indoor setting.

Keywords-portable tele-immersion, smartphone camera

I. INTRODUCTION

Video cameras play an important role in real time collabo-
ration. Single cameras are used for video conferencing. With
proper synchronization and calibration, multiple cameras are
used for tele-immersion. With the prevalence of HD 2D and
3D monitors, there is a need to consider HD video sources.

Portable HD capture can enable a variety of applications.
For example, field technicians can directly stream high
fidelity immersive views of intricate components from the
customer’s site and consult with experienced technicians.
Achieving portability while using commodity components
can also reduce the overall system cost and lead to wide
spread adoption of tele-immersion techniques.

In prior systems, many cameras were [1] attached to a
cluster of computers that performed the necessary video
processing and then transmitted the streams to the remote
site for tele-immersive viewing. These cameras where syn-
chronized amongst each other using a hardware trigger.

Many tele-immersive systems achieved low latency by
sending uncompressed video data. Such an approach is band-
width intensive; a single 3D stream at a 320x240 resolution
required more than 100 Mbps [2]. A single HD 3D stream
will require over three Gbps; compression is inevitable in
practice. Real-time compression of high definition streams
is resource intensive. Powerful laptops are expensive while
servers are also bulky. Neither of them is truly portable.

Mobile

Home

Work

Sender 2D

3D

immersive

= Smart phone

Figure 1. Capture architecture

The interconnect bandwidth between camera and the
computer also plays an important role. With uncompressed
videos, low bandwidth limits the supported video resolution.
Uncompressed HD video requires about 1.5 Gbps; well
beyond the capacity of popular IEEE 1394b (800 Mbps)
or USB 2 (480 Mbps). HD cameras that support newer
interconnects such as USB 3 and Thunderbolt are still in
their infancy and thus expensive. A general shift towards
tablets is also delaying the commoditization of HD web
cameras. Some video cameras include compression hardware
that encode the HD video stream before transferring them
over the interconnect. For example, the Logitech HD Pro
Webcam C920 uses an H.264 encoder on the camera. It
uses a custom USB driver that decompresses the video at
the desktop and presents them to applications. Our analysis
showed that these encoders produced poor quality videos
and added significant compression artifacts. The client driver
also used the host CPU for its decoding operations and was
poorly supported. Traditional approaches could not achieve
our portability and fidelity goals.

With a projected shipment of a billion units in 2013
[3], smartphones are replacing traditional cameras [4]. They
include a HD camera with good low light capture capabilities
for indoor use. They are equipped with a high capacity bat-
tery and can communicate using high speed IEEE 802.11n
WLAN and 4G cellular networks. They use H.264 hardware
encoders. These factors make them an ideal platform for
portable HD video capture. We investigate the suitability of
using smartphones to replace the “camera connected to a

(a) Nikon D7000(24 fps, 26 Mbps) (b) iPhone 4S (30 fps, 5.22 Mbps)

Figure 2. 128x128 pixels from captured video

computer” model used by prior systems [5].
An investigation of various smartphones showed the

strengths of the iPhone 4S for video recording. Sande et al.
[6] observed that for a film maker, the iPhone 4S videos
compared favorably to a USD 2,400 DSLR. The iPhone
4S uses a PowerVR SGX543MP2 GPU for video encoding.
It uses an Omnivision OV8830 sensor of size 4.59 x 3.45
mm for a 35 mm equivalent crop factor of 7.6. It uses a
lens of aperture f/2.4 and a focal length of 4.3 mm which
corresponds to a 35 mm equivalent of 32.77 mm focal length
at an aperture of f/18.3. This produces videos with a large
depth-of-field. Such videos are ideal for 3D reconstruction
[2]. Its hyperfocal length is about 6 ft. Thus, when the
camera is focused on an object that is six feet from the
camera, objects which appear between three feet and ∞
from the camera appear to be in focus. This is an acceptable
distance for placing a smartphone in a typical office.

Next, we investigate the quality of videos captured by
an iPhone 4S in an office setting. First, we jotted some
illustrations on the white board. Using the ambient light, we
took a video of it from six foot away (hyperfocal length)
using an iPhone 4S and a Nikon D7000 DSLR. The Nikon
DSLR D7000 with the 18-105mm VR zoom lens retails for
USD 1,500. It uses a 23.6 x 15.6 mm CMOS sensor for a
35 mm equivalent crop factor of 1.5. We set the lens to a
focal length of 22 mm and an aperture of f/11 to closely
match that of the iPhone. This camera captures 1080p24
H.264 movies at an average bandwidth of 26.44 Mbps while
iPhone captures 1080p30 movies at 5.22 Mbps. We cropped
a 128x128 pixel region and show them in Figure 2. Closer
examination revealed some compression artifacts with the
iPhone captured image. Still, for a tele-immersive setup from
a typical office room, the iPhone captured images compared
favorably to the video captured by the DSLR. Note that it
is not possible to stream from the DSLR itself.

Real-time collaboration requires low latency capture. ITU-
T G.114 [7] recommends a one way audio delay of 400
msec for good interaction. HD resolution produces enormous
amounts of video data necessitating algorithms that achieve

good compression with low latency. Frequently, video qual-
ity is sacrificed to achieve bandwidth and delay targets.

iPhone offers excellent video recording. However, they are
not shipped to act as streaming cameras. The AV Foundation
only supports ways to write the compressed video data to
a file. The compression system is also optimized to prefer
quality over latency. The CPU capabilities of the iPhone
preclude using our own software encoder that changes this
tradeoff. Hence, we investigate whether the iPhone can be
repurposed for HD video streaming without reengineering
their hardware. We only use published API calls. Note
that iPhone video chat systems such as Skype use software
encoders with poor video quality and resolution.

We simulate streaming by creating a sequence of H.264
encoded movies. The number of frames in each segment
represents a tradeoff. H.264 achieves good compression by
removing inter-frame redundancy; videos with few frames
are deprived of this opportunity. On the other hand, waiting
to accumulate enough frames adds to the end-to-end delay.
Also, H.264 encoders that are optimized for storage require
some time to finish the compression process. There is an
inherent tradeoff between achieving good compression and
minimizing compression delay. We analyze the factors that
contribute to the end-to-end delay between a real-life event
and rendering a video of the event on the remote computer.

Our videos were encoded in good quality and required five
Mbps of network bandwidth. The end-to-end delay was 712
msec (at 16.5 fps) while 1.1 sec delay achieved 24 fps. Next,
we investigated the factors that contributed to this delay.
Delays introduced by choosing the number of frames in each
segment is inherent to our approach while delays introduced
by hardware limitations are already being improved in the
next generation smartphone.

Next, we investigated the feasibility of using our smart-
phones for tele-immersion. Smartphones lack hardware cap-
ture triggers. However, the slow shutter speeds required
for indoor capture minimized the effects of unsynchronized
video capture. We describe encouraging experiences with
a remote HD Stereoscopic viewer. Overall, our end-to-end
delay is tolerable for scenarios which prefer the portability
and HD video quality of our approach.
§II describes our smartphone application. §III analyzes

delays introduced by our approach. §IV investigates the
behavior of a flock of cameras for use in tele-immersion.
We muse over ways in which the smartphone hardware and
software can be improved to provide better video capture
for tele-immersion purposes in §V. We present related work
in §VI and conclude in §VII.

II. PHONÉCAM VIDEO CAPTURE APPLICATION

We used the rear facing camera. iOS AV Foundation
compressed movie files using the hardware encoder. We used
Grand Central Dispatch to achieve parallelism. We created a
AVCaptureSession and associated the rear facing HD camera

(a) HD (1920x1080)

(b) Super HD (1920x1440)

Figure 3. 16:9 and 4:3 aspect HD video with the iPhone 4S

and the audio input device as AVCaptureDevices. Thus, the
audio and video components are always in synchrony. Con-
figuring the session to use the AVCaptureSessionPresetPhoto
preset allowed us to either capture videos in 16:9 aspect ratio
(1920x1080) or at a 4:3 aspect ratio (1920x1440). The 4:3
aspect ratio is more suitable for teleconferencing (Figure 3).
Instead of 30 fps, the 4:3 aspect ratio stored 33% more pixels
at 16 fps. Given the lower capture rate, we use 1920x1080
videos for the rest of the paper.

Unlike the built-in video capture application, we dis-
abled image stabilization. This allowed us to retain the
wider field of view as still image capture. We created
two AVCaptureVideoDataOutputs and associated them with
output files stored in the application’s document directory.
One of these outputs is active while the other remains
ready to capture the subsequent video segment. We chose a
maximum frame interval between intra-coded (I) frames of
100 thereby ensuring that each video segment will consist
of a single I frame and a series of Predicted (P) frames.
The audio component was encoded using AAC while video
was compressed using H.264. The AV Foundation provides

each audio and video sample via a captureOutput: call-
back. In this callback, we store a configurable number of
frames into the currently active output. Once the required
number of frames were reached, we activate the inactive
AVCaptureVideoDataOutput output, continued to complete
the compression process and then created a new AVCapture-
VideoDataOutput (associated with a new file) in a separate
thread. Once the compression is complete, the video data is
read and scheduled for wireless transmission.

The dual core processor in an iPhone 4S performs many of
these operations in parallel in order to achieve high effective
frame rates. Note that the compressed movies are written to
a file stored in flash memory. §III-D4 shows that the cost to
read the file ranges between 2.5 and 10 msec. We further
breakdown the delay costs for the various steps in §III.

A. PhonéCam performance

For a teleconferencing pose, we achieved frame rates of
16.5, 21.5, 24, 25.7, 27.1, 28 and 28 fps, for choosing 5,
10, 15, 20, 25, 30 and 35 frames per segment, respectively.
Segments with less than five frames were unreliable because
of a large compression overhead (discussed in §III-D3).
The bandwidth consumed hovered around four Mbps. The
HSDPA cellular technology used by iPhone 4S supports
downlink bandwidth up to 14.4 Mbps. In the US, we
measured downlink and uplink bandwidths of 4.9 Mbps and
1.3 Mbps. Users of AT&T LTE (iPhone 5) report downlink
20 Mbps, uplink 12 Mbps and a ping latency of 58 msec;
LTE can allow PhonéCam to operate over cellular links.

III. CAPTURE DELAY

Earlier, we showed the quality of images captured by
iPhone 4S. We also investigated the constant bit rate nature
of videos encoded by its hardware encoder. However, latency
remains of import. For real-time scenarios, the duration
between a real life event and when it appears on the remote
monitor should be minimal. ITU G.114 [7] recommends a
maximum end-to-end audio delay of under 400 msec for
transparent interactivity; ideally they prefer delays under 150
msec. Without accounting for compression and transmission
delays, our application (with a minimum of five frames
per segment), requires 5

30 seconds (166.67 msec). Next, we
empirically investigate the end-to-end delay for our setup.

A. Measurement methodology

We need to measure the duration between when an event
happens in real life and when it appears on the remote
screen. In between, the image is captured by the video sen-
sor, encoded into a H.264 movie, streamed over the wireless
LAN network using TCP and then received, decoded and
rendered on the remote display. The work flow traverses
multiple computing environments (e.g., smartphone, wireless
network, remote computer).

(a) duration between reference clock and remote display

(b) round trip delay between two Cisco Tandberg

Figure 4. Duration between events in different domains

The time interval within the same computing environment
is calculated using the timestamps collected at the beginning
and end of the event. For measuring the duration between
events happening in different environments, we did not rely
on time synchronization schemes such as NTP [8]. Instead,
we used another camera to simultaneously capture the two
events for visual inspection. E.g., to measure the end-to-end
delay between when a real life event happens and when the
scene is shown on the remote computer, we displayed a high
resolution clock on a reference computer and then trained
PhonéCam on this screen. A remote compute received the
movies from the smartphone, decoded the H.264 movie and
rendered it on its screen. We then took a still snapshot of the
high resolution reference clock and the remotely rendered
version and then visually calculated the time difference. Note

that we require the high resolution reference clock to be free
from any drift during our measurement interval of a few
seconds; we do not require synchronization to a global clock.
In the illustration in Figure 4(a), we used the same laptop
for the remote and the reference clock. The reference clock
was at 28,305.382110 sec and the remote end was rendering
image from 28,304.670306 sec; accounting for an end-to-
end delay of 711.804 msec. We repeated each experiment six
times and report the average values. We describe the specific
setup for measuring each delay component in §III-A.

For the reference clock, we developed an iOS/OS X appli-
cation that continuously displayed the local time with µsec
accuracy (using [[NSDate date] timeIntervalSince1970].
Smartphones use a top-to-bottom rolling shutter image cap-
ture. Hence, we displayed the same time multiple times from
the top of the screen to the bottom. Even though we noticed
hints of the rolling shutter effect, the capture delay between
the top and the bottom was too small to be noticeable. Our
reference laptop refreshed its screen at 60 Hz.

B. Delay experienced by deployed systems

ITU G.114 [7] recommends tight delay bounds. To get a
realistic understanding of typical end-to-end delay, we mea-
sured them on two different deployed video conferencing
systems. These systems trade off image quality to achieve
low delay. For this analysis, we did not consider the picture
quality loss.

1) Wireless video chat applications: We measured the de-
lay between video chat applications using two Mac laptops,
one of which used IEEE 802.11n wireless. None of these
applications support HD. We ran our reference clock on the
wired laptop. Using an USB2 webcam, the wireless laptop
captured this clock and sent the video back to the wired
laptop. We then photographed the original clock as well
as the time displayed by the chat application on the wired
laptop and visually computed the difference. We measured
a delay of 325 msec while using iChat and 218 msec while
using Skype. Both these chat applications used a peer-to-
peer link to directly communicate between the two laptops
without using an intermediary server. Lu et al. [9] reported
similar delay while using Qnext, Vsee and Nefsis (150 msec,
270 msec and 410 msec, respectively). However, server
assisted systems such as Mebeam introduced significant
delays (2770 msec).

2) Cisco Tandberg C40 telepresence system: Next, we
measured the end-to-end delay between two local Cisco
Tandberg C40 telepresence systems (with Premium Resolu-
tion option) that were connected via the local gigabit wired
network. These units either accepted a HD camera or a
HDMI input which was then H.264 encoded and streamed.
This system could be configured to limit its network usage
between 256 and 2560 Kbps with a corresponding loss in
video quality. Note that we could not measure the true video

resolution and frame rates achieved. Each end point costs
over USD $20,000. The system was also not portable.

We displayed our microsecond clock. The local C40
HD camera observed this clock. At the remote end, we
connected the HDMI monitor output of a HD camcorder
to the C40, focused the camcorder to watch the video of the
clock and thus retransmit it back to the originator. We then
photographed the original clock and the video reenactment
sent from the remote end (Figure 4(b)). The laptop reference
clock was displaying 17,880.973569 sec while the round trip
through the system showed the clock value of 17,880.383867
for a round trip value of 589.702 msec (one way latency of
294.851 ms).

C. Delay experienced by our system

First, we built a Mac OS X application that received the
H.264 encoded video segments from our iPhone, decoded
and then displayed them using CoreGraphics rendering. We
ran the reference clock on our laptop, trained the iPhone to
watch this clock and then captured an image of the reference
clock and the rendered image captured by the iPhone. We
tabulate the average delay for various number of frames in
each video segment in Table I. We observe delays of over
700 ms. Next, we delve into components that contribute to
this delay and describe ways to reduce them.

D. Detailed delay components

We tabulate the delay for the seven different steps used
by our system in Table I.

1) Capture real-life event (t1): We measured the delay
between the real life event and when it was captured by
the video sensor and shown in the camera previewer using
the technique described in §III-A. This delay might include
time to convert the captured image into a displayable image
(i.e., could account for the rendering to screen delay after
Step 7). This delay for iPhone 4S, Galaxy Nexus, Macbook
Pro laptop, iPad, AVCHD camcorder and Tandberg C40
was 121.3 ms, 140 ms, 101 ms, 210 ms, 66 ms and 140
ms, respectively. ITU G.114 [7] recommends an end-to-end
delay of under 150 msec for good performance; it is difficult
to remain within those recommendations unless steps are
taken by hardware vendors to reduce this delay.

2) Capture frames into segment (t2): We measured the
duration between when the first and last frames were added
into each segment by the callback function. As a 30 fps cap-
ture camera, we expected these durations to be in multiples
of 33.3 ms (of the number of frames in each segment). Table
I shows the jitter from these expected values. In some cases
(e.g., 25 frames per segment), the system skipped capturing
some frames altogether (887.7 ms corresponds to a duration
for 26.6 frames). This delay is likely to be reduced by future
quad core processors.

3) Finalize compression (t3): Since the iPhone video
encoder was not designed for streaming, it introduces a delay
to finish compressing all the captured frames. After the last
frame was added to the movie file, we call the synchronous
method finishWriting. We measured the compression final-
ization delay as the duration taken by finishWriting. We
observed (Table I) a delay of about 160 ms. Even though
this processing is performed in a background thread without
affecting the video capture, it needs to be completed before
a subsequent capture can proceed to a new movie segment.
Thus, this delay precludes us from storing video segments
shorter than 160 ms (or less than five frames per segment).
This delay is likely to be reduced using faster video encoders
in future iPhones.

4) Read movie segment (t4): Next step is to read the
video files that are stored in the internal flash memory. We
measured delays of between 2.5 ms (for five frames) to 10.6
ms (for forty frames). OS support to compress the segment
into a memory region could be useful.

5) Segment transfer latency (t5): We define this latency
as the time between when a movie segment is read and when
it is actually written to the network socket by the transmis-
sion thread. This delay measures the CPU competition by
the transmission thread. Even though we use a single TCP
connection (and hence not pay the TCP startup overhead) to
upload all the segments, we notice a significant, segment size
dependent latency. Our earlier work [10] observed similar
effects from interrupt processing overhead. Further work will
explore the nature of this latency and develop schemes to
reduce its effect.

6) Upload movie segment (t6): iPhones uses a single
spatial channel IEEE 802.11n in the crowded 2.4 GHz band.
This delay measures the wireless transmission duration.
We observed an effective bandwidth of 29 Mbps for our
application. On the new iPad, we noticed an average gain
of about 40 ms each for t5 and t6, either from a faster
CPU or through the use of both the 2.4 GHz and 5 GHz
for wireless. There is potential for reducing these network
delays in the next generation smartphones by using multiple
IEEE 802.11n channels.

7) Decode first frame from segment (t7): Finally, we
report the delay between when the segment was received
and when the first frame was decoded into an RGB bitmap.
On a Macbook Pro laptop using a 2.2 GHz Intel Core i7
processor, we measured a modest delay of about 20 ms.

Note that for segments of five and ten frames, the sum
of these delays does not account for all the delay between
real life event and remote screen display; the subsequent
step of converting the uncompressed bitmap into a screen
element added significant delay. On the other hand, using
a larger number of frames per segment achieved better
performance than predicted by analyzing each individual
step. For example, using 30 frames per pixel, we observed
an end-to-end delay of 1.2 sec even though the sum of

frames end-to-end average delay introduced by each step (in ms)
per delay t1 t2 t3 t4 t5 t6 t7 7∑

i=1

tisegment (§III-C) (§III-D1) (§III-D2) (§III-D3) (§III-D4) (§III-D5) (§III-D6) (§III-D7)
5 712

121.3

155.1 159.7 2.5 85.9 41.8 19.0 585.4
10 837 332.7 156.4 4.1 95.8 85.4 17.5 813.2
15 1034 543.9 170.0 5.2 100.7 116.5 19.9 1077.4
20 1143 713.0 143.8 4.2 138.2 150.9 18.3 1289.7
25 1194 887.7 131.9 5.4 132.0 205.7 19.6 1503.6
30 1248 1001.4 146.5 6.4 133.6 236.2 19.4 1664.9
35 1489 1166.1 151.5 6.9 109.9 247.9 21.3 1824.8
40 1485 1327.9 153.7 10.6 110.6 294.3 21.5 2039.9

Table I
PERFORMANCE OF OUR STREAMING APPLICATION (AVERAGED OVER SIX MEASUREMENTS)

Figure 5. Local times synchronized across four iphones

the overhead showed a value of 1.7 sec. Mac OS X uses
the hardware decoder built into the Intel HD 3000 GPU.
We observed a CPU/memory bottleneck and are exploring
a GPU based rendering solution.

IV. TIME SKEW BETWEEN CAMERAS

In the last section, we analyzed the HD capture and
streaming capabilities of our PhonéCam smartphone applica-
tion. Time skew between cameras influences their suitabil-
ity for tele-immersion. Next, we investigate the suitability
of a flock of PhonéCams for tele-immersive applications.
Acquiring 3D data from multiple cameras requires syn-
chronized capture. Prior approaches used custom or off-the-
shelf hardware triggers [11] to achieve such synchronization.
Smartphone cameras do not offer a hardware trigger capa-
bility. Hence we investigate their suitability for providing
synchronous capture. Smartphones use NTP [8] for syn-
chronizing their clocks; we investigate whether their internal
clocks are in synchrony. We also investigate the relationship
between images captured by these unsynchronized devices.

Figure 6. Synchronized capture from four unsynchronized iPhone

A. NTP synchronized local clock

First we analyze whether the local clocks are synchronized
closely enough for event ordering. Since different PhonéCam
videos are directly streamed to the rendering client, event
ordering allows the recipient to choose the appropriate frame
from a particular iPhone while building a 3D model. We
configured the iPhones to set their clock using NTP [8]
over WiFi; we did not enable cellular access. We ran our
reference clock on four different iPhones and photographed
them (Figure 5). We observed clock values of 3,276.575713,
3,277.363998, 3,275.620506 and 3,278.621875 seconds. The
clocks were widely divergent; the clocks in two of these
phones were almost three seconds apart. Resetting the
iPhones did not reduce this skew. Hence, using the iOS
Gamekit framework, we built a Bluetooth based mechanism
in which one iPhone broadcasts it local clock; others used
the difference between their local clocks and this reference
value for event ordering.

B. Capture using unsynchronized iphones

The next form of skew happens when the iPhones capture
the same event at different times. Hardware trigger will

(a) iPhone-1

(b) iPhone-2

Figure 7. Unsynchronized capture in detail

eliminate this skew. Since the cameras capture videos at
30 fps, we expect the cameras to be out of sync amongst
each other by about 16.66 ms (1

60 sec). For this experiment,
we ran the reference clock on a desktop and trained our
four iPhones to record this clock. We photographed the
preview screen for each of these four phones and the
desktop. We observed that the previews were remarkably
close, frequently indistinguishable and within three ms of
each other. In Figure 6, we observe that all the four cameras
are virtually in sync.

With the ambient lighting in our office, the phones needed
a shutter speed of 1

20 at an aperture f/2.4 for still shots.
Since our application was capturing videos at 30 fps, the
capture sensors were essentially integrating all the photons
received within the past 1

30 s. Even when the time in which
a particular sensor values was read differed by 1

60 sec, the
information in the captured images were similar. When the
captured object was moving, we observed that the shades
of the object changed between video frames from different
cameras. We high-light this effect between iPhone-1 and
iPhone-2 (in Figure 6) in Figure 7. As the precision of
the reference clock increases, the synchronicity difference
between the cameras manifests itself in a blurred image. For
stereoscopic viewing of videos from two cameras, this mis-
match was subjectively acceptable for normal movements
in a tele-conferencing setup. Further investigations on the
effect of this mismatch in sunny outdoors as well as active
scenes is the subject of ongoing work.

V. WISH LIST FOR FUTURE SMARTPHONES

Though the image quality was excellent, the capture delay
can be high. Providing a streaming API that returns a
H.264 encoded video from the camera would be a welcome
improvement as it can eliminate the capture frames into
segment (t2) and read movie segment (t4) delays. We
summarize other technologies that could reduce the capture
delay and synchronization artifacts.

• More control over video capture sensor: The iPhone
optical system offers excellent light capture capability.
PhonéCam can benefit from the availability of more
software control over the capture process. E.g., an ability
to lock the camera focus to its hyper focal length as
well as control the capture aperture would be invaluable.
Note that the upcoming iOS 6.0 does not provide this
functionality. Also, we showed an undocumented ability
to capture videos at 1920x1440 resolution. An ability
to encode such a resolution video at 30 fps would be
invaluable as 4:3 aspect ratio videos have a more natural
feel in a tele-conferencing setup. Finally, the camera
APIs support setting the capture aperture though the
captured images still stayed in the central region of the
3264x2448 pixel optical sensor. An ability to chose the
capture region within the larger image sensor can provide
software panning capability to PhonéCam .

• More cores for better parallelization: The iPhone sup-
ports two video encoders and two CPUs. More CPU
cores can reduce delays such as the segment transfer
latency (t5). More video encoders can help parallelize the
compression finalization phase (t3). They can also allow
the clients to adopt to network conditions by encoding
videos with different bandwidth targets; each bandwidth
will require an additional pair of video encoders. Apple
reports that the upcoming A7 processor in the iPhone 5s
doubles the CPU performance. We will investigate the
performance improvement with this new hardware.

VI. RELATED WORK

Tele-immersive systems had traditionally [2] reduced the
end-to-end delay by either streaming uncompressed or low
resolution video. Kauff et al. [12] built a hardware MPEG4
that used ITU BT.601 resolutions. They used MPEG4 ar-
bitrary shapes and disparity map as auxiliary alpha bit-
plane to reduce the network requirements. Jung et al. [13]
used 12 dual core PCs, each with 3 B&W cameras and IR
structured lighting for depth and 1 color camera to compress
640x480 tele-immersive video at 15 fps. Vasudevan et al.
[14] performed 3D reconstruction in under 30 msec. They
used Bumblebee 2 cameras at 320x240 for 3D reconstruction
and achieved a compression ratio of 55% in 20 msec.

Wu et al. [11] describe a mobile tele-immersive capture
system that builds on their prior work on Teeve [5]. They
report a 3D video frame rate of 17.3 fps over wireless LAN.

They do not report the end-to-end latency or the bandwidth
consumption. They use an external BumbleBee2 camera
and associated computing infrastructure. Our approach can
provide good quality HD videos in a smartphone form-factor
that incorporates the capture and streaming component. We
believe that the capture latency is acceptable. Further work
will define the parameters of useful usage scenarios.

Tele-immersive systems [5] had traditionally used we-
bcams for video capture. HD capture is limited by the
interconnects between the camera and the computer; USB2
and FW800 are inadequate. Some webcams address this
limitation using compression hardware. We investigated sev-
eral webcams that used Motion JPEG or H.264 encoding
and observed the compressed streams to be of poor quality
with unacceptably high compression artifacts. Good quality
compression hardware remains expensive. Technology im-
provements typically lead to a reduction in hardware costs.
However, external webcams are being replaced by cameras
built into monitors. Even though newer interconnects such
as USB3 can support bandwidths of 5 Gbps between the
camera and the computer, few stand alone HD cameras are
being built to use this capacity. Another alternative is to
use the video monitoring over HDMI capabilities of HD
camcorders and using HDMI capture cards on the computer.
Many HDMI capture cards are built for video recording and
introduce inordinate latencies to the capture workflow.

Seo et al. [15] segmented a stored video file and uploaded
them from a smartphone for HTTP live-streaming. We
are concerned with real-time capture and streaming with
minimal latency.

Murai et al. [16] developed a mediation mechanism to
counteract latencies of over 700 ms observed in their confer-
encing setup. Our system could benefit from their approach
for real time interaction.

VII. DISCUSSION

Apple sold over one million iPhone 4S within the first 24
hours. This work leverages the economies of scale unleashed
by smartphones to build portable HD video capture for
tele-immersive scenarios. Though the image quality was
excellent, the capture delay can be high.

Our work can benefit from the availability of a streaming
API that returns a H.264 encoded video. PhonéCam can also
benefit from more software control over the capture process.
For example, an ability to lock the camera focus to its hyper
focal length as well as control the capture aperture would
be invaluable. More CPU cores can reduce delays such as
the segment transfer latency (t5). More video encoders can
help parallelize the compression finalization phase (t3).

REFERENCES

[1] J. Liang, Z. Yang, B. Yu, Y. Cui, K. Nahrstedt, S.-H. Jung,
A. Yeap, and R. Bajcsy, “Experience with multi-camera tele-
immersive environment,” in NSF Workshop on Pervasive and
Cluster Computing, 2005.

[2] Z. Yang, B. Yu, K. Nahrstedt, and R. Bajscy, “A multi-stream
adaptation framework for bandwidth management in 3d tele-
immersion,” in NOSSDAV ’06, 2006, pp. 14:1–14:6.

[3] K. Restivo and R. Llamas, “Worldwide mobile phone
market forecast to grow 7.3% in 2013 driven by 1 bil-
lion smartphone shipments,” http://www.idc.com/getdoc.jsp?
containerId=prUS24302813, Sep. 2013.

[4] M. Lee, “Iphone grabs camera market from sony: Chart of
the day,” Bloomberg News, Mar. 2012.

[5] Z. Yang, K. Nahrstedt, Y. Cui, B. Yu, J. Liang, S.-h. Jung,
and R. Bajscy, “Teeve: The next generation architecture for
tele-immersive environment,” ser. ISM ’05, 2005, pp. 112–
119.

[6] S. Sande, “iPhone 4S video compared to Canon
5D MK II,” http://www.tuaw.com/2011/10/17/
iphone-4s-video-compared-to-canon-5d-mk-ii/, Oct. 2011.

[7] I. T. S. Sector, “Series g: Transmission systems and media,
digital systems and networks,” May 2003.

[8] D. L. Mills, J. Martin, J. Burbank, and W. Kasch, “Network
time protocol version 4: Protocol and algorithms specifica-
tion,” RFC 5905, Jun. 2010.

[9] Y. Lu, Y. Zhao, F. Kuipers, and P. Van Mieghem,
“Measurement study of multi-party video conferencing,” in
Proceedings of the 9th IFIP TC 6 international conference
on Networking, ser. NETWORKING’10. Chennai, India:
Springer-Verlag, 2010, pp. 96–108. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-12963-6 8

[10] P. Xue and S. Chandra, “Revisiting multimedia streaming in
mobile ad hoc networks,” in ACM Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV ’06),
Newport, RI, May 2006.

[11] W. Wu, R. Rivas, A. Arefin, S. Shi, R. M. Sheppard, B. D.
Bui, and K. Nahrstedt, “MobileTI: a portable tele-immersive
system,” in ACM Multimedia, ser. MM ’09. Beijing, China:
ACM, 2009, pp. 877–880.

[12] P. Kauff and O. Schreer, “An immersive 3d video-
conferencing system using shared virtual team user
environments,” in CVE ’02, 2002, pp. 105–112. [Online].
Available: http://doi.acm.org/10.1145/571878.571895

[13] S.-H. Jung and R. Bajcsy, “Learning physical activities in
immersive virtual environments,” in IEEE ICVS ’06, New
York, NY, Jan. 2006, pp. 5–.

[14] R. Vasudevan, Z. Zhou, G. Kurillo, E. J. Lobaton, R. Bajcsy,
and K. Nahrstedt, “Real-time stereo-vision system for 3d
teleimmersive collaboration,” in ICME’10, Singapore, Jul.
2010, pp. 1208–1213.

[15] B. Seo, W. Cui, and R. Zimmermann, “An experimental study
of video uploading from mobile devices with http streaming,”
in ACM MMSys ’12, 2012, pp. 215–225. [Online]. Available:
http://doi.acm.org/10.1145/2155555.2155589

[16] K. Murai, D. Kimber, J. Foote, Q. Liu, and J. Doherty,
“Mediated meeting interaction for teleconferencing,” in ICME
’05, Jul. 2005, pp. 1436–1439.

