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Abstract—The ubiquitous deployment of wireless LAN net-
works are allowing students to embrace laptops as their preferred
computing platform. We investigated the viability of building
collaborative applications to share contents amongst student
groups. In our application scenario, the university will provide
wireless infrastructure throughout the campus but not the storage
infrastructure required to store the shared contents. Laptops
will likely exhibit weak availability. Hence, these collaborative
applications need to tolerate long delays in propagating updates
amongst the participants. In this paper, we presented a prelimi-
nary analysis of message forwarding behavior under realistically
resource constrained node scenarios. Our experiments were based
on the observed wireless user behavior at the University of Notre
Dame. Our experiments showed the inherent limits of epidemic
propagation in real campus wireless network scenarios.

I. MOTIVATION

Wireless laptops are gradually replacing desktops as the
primary computing platform for many users. USA today [1]
described the emergence of about 30 million (American)
mobile laptop users. At our university, there were 12,252 (as
of Nov 1, 2007) wireless devices. We expect similar trends
among user communities in large enterprises as well.

Newer laptops are matching the resources available in a
desktop device; boasting resources as high as 2.6 GHz dual
core processors, 300 GB of hard drive storage and 4 GB of
main memory. Traditionally laptops were dependent on storage
services provided by a wired infrastructure. Mobile laptops
may be offline for long durations making any dependence
on infrastructure storage particularly problematic. Besides, it
is harder to provide the collaborative storage infrastructure
that can match the aggregate contents in these resource rich
laptops. For example, even if each laptop in our university
volunteered as little as 10 GB of its local storage, the aggregate
capacity can easily reach over 100 TB. Our goal was to
understand the viability of collaboration among wireless users
without depending on the wired storage infrastructure.

Laptops go through periods of disconnection. Hence, col-
laborative applications among laptops need to operate using
local copies of the data. Since all the group members are
not simultaneously available, epidemic algorithms [2] can be
used to asynchronously propagate local updates to other group
members when they are available. Depending on the node
availability, updates among the nodes can be delayed for long
durations. The local data may not be consistent across all
the participating nodes. Such a collaborative system critically
depends on the rates at which updates are created, update size

(updates are propagated to all the group participants), as well
as by the node availability. It is important to analyze the rates
at which updates can be propagated in a real deployment.
Earlier research efforts did not have the benefit of the critical
mass of available wireless devices for their analysis. We used
wireless LAN users at the University of Notre Dame, as the
basis for our study. Unlike Hui et al. [3], we do not require
that the collaborators be in close proximity to each other.
We assumed that any two devices that were simultaneously
online can communicate with each other; either using the
university wireless infrastructure or through ad hoc networks.
We also assumed that the infrastructure itself did not provide
any storage resources to assist in message propagation.

In a companion paper, we investigated the availability
characteristics of wireless devices at Notre Dame. We observed
that wireless devices tended to exhibit short durations during
which they were available followed by extended durations
when they were not available. The churn frequency itself was
not high. The node availability exhibited diurnal distribution
with far fewer nodes available early in the morning. However,
we showed that the temporal consistency values were high:
both for analyzing the same users availability behavior or
for any two pairs of users. Users who were part of the high
consistency set can provide better collaborative services.

In this paper, we analyzed the epidemic propagation rates
among these users for varying group sizes. Our preliminary
analysis showed that the propagation can exhibit large delays.
On average, a single update can reach about 60% of the collab-
orators in about 24 hours while reaching 90% of the members
in over ten days. Buffer constraints on the intermediate nodes
severely affected the propagation durations. Unlike Vahdat et
al. [4] who used a random node mobility model, our realistic
analysis could not achieve 100% propagation rates even after
ten days. Further work is needed to improve realistic routing
mechanisms for delay tolerant applications.

The rest of the paper was organized as follows: we describe
related work in Section II. We describe the system architecture
in Section III with results from our experimental analysis in
Section IV. We conclude in Section V.

II. RELATED WORK

We build on advances in understanding of mobile discon-
nected access and in delay tolerant networks (DTN).

Developed over a decade back, applications such as Bayou
[5] operated without centralized storage infrastructure and



used epidemic algorithms [2] to propagate updates. However,
the behavior of these systems fundamentally depends on the
mobility patterns of typical users. Wireless laptops are recently
far more ubiquitous than when these systems were developed.
Our focus in this paper was to analyze the availability patterns
of modern wireless users in order to understand the expected
propagation rates.

Vahdat et al. [4] used epidemic routing to propagate updates
in an ad hoc networking scenario. They simulated a random
node mobility pattern and analyzed the propagation behavior
by varying the radio range. They showed that epidemic routing
achieved eventual delivery of 100% of messages. Similarly,
Davis et al. [6] investigated propagation among wearable
computers using simulated human mobility. They investigated
the effects of message duplication and buffer overhead. Re-
cently, delay tolerant network technologies (DTN) are used
to asynchronously propagate updates among a set of clients.
Fall [7] introduced an network architecture that operated
without continuous network connectivity among the partici-
pating nodes and investigated [8] the routing behavior across
a DTN. They used simulations and progressively increased
the amounts of network topology information available to the
routing mechanism. They showed that the systems performed
better with the addition of more topology information. Our
primary goal was to validate these propagation rates using
realistic node mobility behavior rather than by using simulated
behavior.

Chaintreau et al. investigated [9] opportunistic forwarding
algorithms using the captured contact information of volunteer
conference attendees at INFOCOM 2005 [3]. Similarly, Song
et al. [10] used the access point records to collect contact
patterns among wireless users. They observed that the epi-
demic propagation can be unacceptably long, especially among
casual users (some users might never meet each other in
the future). We consider that any two nodes that are online
are also accessible to each other either by using the campus
network infrastructure or by using ad hoc routing mechanisms.
Hence, our node availability was expected to be far better than
that was observed using user contact measurements. However,
even with this improved availability, we observed poor update
propagation performance. Our work places serious doubts on
the viability of many prior systems.

III. SYSTEM ARCHITECTURE

We target scenarios where collaborations were effected
among a group of users whom belonged to a larger community
of users. Students collaborating on a project with students
from the same class is an example of such a system. Project
members in a corporate setting could be expected to exhibit
similar application requirements. The members of this group
communicate with other online users using the campus net-
work infrastructure or by using wireless ad hoc networks.
We assume that the infrastructure itself does not provide any
storage facilities to hold the updates for propagation to other
users. The viability of this system depends on the expected
mobility pattern of the individual users. For example, users in

a corporate setting could be expected to be available during
the 9 AM - 5 PM duration while students in a campus setting
may be available throughout the day, especially if the wireless
was also available in the dormitories.

A. Experiment setup

We analyzed the behavior of WLAN users at Notre Dame.
Notre Dame university used over 800 access points to provide
coverage in residence halls, class rooms and the laboratories.
The WLAN network was widely used by undergraduate stu-
dents, graduates, faculty, staff and guests. For our study, we
used the Zeroconf [4] service discovery protocol to collect
the usage statistics of Notre Dame campus WLAN users.
The discovery protocol itself pushed the service availability
information to the monitoring client using link local multicast.
Since these multicast packets are not routed, we require
the monitoring station to be co-located inside the monitored
wireless VLAN. The data collection lasted for eleven days
from September 19, 2006 through September 29, 2006. During
this duration, the entire campus wireless LAN infrastructure
was configured to route all Zeroconf service discovery packets
to the monitoring station. This allowed us the flexibility of
not installing a monitoring station inside each of the campus
WLANs. We used the dns-sd tool to monitor the worksta-
tion.tcp file sharing service used by Mac OSX and Linux
clients. This service was discovered whenever the machine
booted to an useful state. We captured over 2,000 unique hosts.
This number was a significant portion of the entire university
population.

In a companion paper, we describe the availability character-
istics of wireless campus users. We analyzed the online as well
as offline durations. Excellent update propagation rates require
that all users be simultaneously online. We observed that
the users tended to be available for relatively short durations
followed by long durations when they were unavailable. The
churn frequency was not high.

IV. RESULTS

We performed experiments to answer questions such as:
Given the user mobility characteristics, what were the expected
propagation rates for using epidemic algorithms? The propa-
gation rates likely depend on the group size.

A. Message propagation behavior

First, we investigated the suitability of these wireless users
for asynchronous collaborations. Epidemic algorithms [2]
asynchronously propagated individual updates to other users
who were simultaneously accessible. Any such updates were
applied against the local replica. The participating nodes
maintained information about the current updates that were
successfully applied locally. The amount of time it took for
an update to reach all the members of a collaborative group
depended on the user availability. We investigated the epidemic
propagation rates for our user population. We analyze the sys-
tem for propagating a single message as well as in considering
the buffer constraints at the intermediate nodes.
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Fig. 1. Epidemic propagation rate for various group size

In order to evaluate the message propagation characteristics,
first we need to understand the number of students in a course.
Students registered to a particular class can be expected to
share contents with other students. Large classes are likely to
provide more replicas. We analyzed the number of students
registered in each class at Notre Dame for the Fall 2006
semester. We noted that 75% of the classes had six or more
students, while about 25% of the classes had thirty or more
students. For the rest of the paper, we analyzed the system for
group sizes of six and thirty.

1) Epidemic propagation rate for a single message: First,
we analyzed the epidemic propagation rate for sending a single
update to other members. We defined epidemic propagation
rate as the percentage of members who had received the
update. We expected the epidemic propagation rate to de-
pend on the group size and the user availability durations.
Larger groups increased the likelihood of finding other group
members who already carried the update. For simplicity, we
assumed that the updates were transferred instantaneously; if
two users were simultaneously online we assumed that both of
them received the updates from each other. Realistically, this
duration depended on the network used and the update size.
With the increasing prevalence of IEEE 802.11n networks, this
was not an unreasonable assumption. For our experiments, we
initiated the epidemic propagation process from a random node
and computed the average epidemic propagation rates to reach
all group members. We repeated this process for a thousand
times and plotted the average cumulative distributions of the
time it took to propagate the update to all nodes for group
sizes of six, thirty and all users in the system in Fig. 1.
From Fig. 1, we note that the epidemic propagation rate was
reasonably constant across the various group sizes. In general,
the propagation rates were poor, reaching about 20% of the
group members in a few hours. However, even after 24 hours,
the updates had not propagated to over 40% of the users.
Surprisingly, including all the users only marginally improved
the epidemic propagation rate; reaching 65% of the members
in 24 hours (as opposed to 50% for a group of size six). The
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Fig. 2. Epidemic propagation rate for constrained local buffers

epidemic propagation rates were influenced by group members
who were unavailable for large durations.

2) Epidemic propagation with constrained buffer size: In
general, epidemic algorithms were restricted by the availability
rates of nodes that were unavailable for long durations. The
epidemic propagation rates can also be expected to be con-
strained by the amounts of storage available to hold the updates
at the intermediate nodes. In order to understand this effect, we
conducted experiments by varying the amount of buffer space
available at each node (buffer space expressed in message
count, similar to Vahdat et al. [4]). For this experiment,
we considered the propagation of 800 messages that were
randomly generated by each participant to the various group
members for group sizes of six and thirty. Each of the group
participants were restricted by the amount of messages that
they can hoard. Once this buffer limit was reached, the local
node will preempt the oldest message, effectively making this
update unavailable for propagation to other group members
from this node. We ran the experiments for a hundred different
groups and reported the average epidemic propagation rate
at the end of the eleven day data collection interval. We
plotted the results in Fig. 2. We observed that for a group
of size six, with a buffer size limit of fifty messages, the
epidemic propagation rate was about 275 messages in eleven
days. Using a buffer size of 600 messages, 600 messages were
delivered by the end of eleven days. For a group size of thirty,
the propagation rates were higher even with smaller local
buffers because the increased group size allowed for retrieving
the updates from another node. In order to understand the
effects of the node availability, we repeated the experiments
by artificially doubling the observed node availability dura-
tions. Increasing the availability rates increased the epidemic
propagation rates. For a group size of six, with a buffer size of
fifty messages, 450 messages were delivered to all members
in eleven days.

We also introduced routing nodes where a group of six
nodes utilized the services of 24 random nodes to ferry updates
to other members of the group. We observed little improve-



ment in the message delivery durations for this scenario; for a
limit of a fifty message buffer, 450 messages were delivered
in eleven days (as opposed to 275 messages for a group size
of six and similar to the behavior for group size of thirty).

Unlike the observations by Vahdat et al. [4], we never
achieved 100% delivery rates. Vahdat simulated a random node
mobility model. Our results show importance of experimen-
tally validating the propagation rates with real user mobility
patterns. Since node propagation did not improve significantly
by either (artificially) increasing the node availability or by
using random router nodes, we investigated choosing router
nodes specifically in the next section.

B. Improving message propagation using node correlation

In the previous section, we observed that propagation rates
were low. Next, we investigate mechanisms that can improve
these rates by selectively choosing the router nodes. We
analyze the user temporal behavior and the correlation among
different users to choose good nodes.

1) User temporal behavior: First, we analyzed the system
to see if users exhibited predictable behavior by being consis-
tently available at the same time every day (for the eleven days
that we investigated). Suppose a significant percentage of the
users were available at (say) 10 AM. One can then imagine
achieving good propagations rates during this time on every
day (when other users were also simultaneously online). On
the other hand, if we noticed that a significant number of users
were not consistently available at (say) 10 AM, then one can
safely ignore this time period. Even though one cannot build a
collaborative system at this particular time, it may not matter
much because there were no other users who could generate
or consume updates.

For this analysis, we chose three particular times of the day;
3 AM (late night), 3 PM (work time) and 9 PM (evening). We
analyzed the users who were available at this time in all of
the eleven days (that we monitored the system). Note that we
would not count an user who become unavailable at say 2:59
AM. We tabulated the results for analyzing both as counts, as
well as percentages in Table I. The table should be read as
follows: 59.5% of the users (1,211) were never seen at 3 AM,
11.2% (227) were at least seen once, while 3.59% (73) were
seen at 3 AM on all eleven days. From Table 1, we note that a
significant number of users (59.5% (1,211)) are never seen at
late night. As a percentage of the total user population, there
is little temporal available consistency wherein the users were
always available at the same time in all the eleven days.

In order to further understand the user behavior, we com-
puted the rate of available time consistency as follows: we
define consistency at a specific hour by the metric that the
user will either be consistently available or unavailable on
all the eleven days. For example, if either the user was not
available on all eleven days or the user was unavailable on all
eleven days at a specific time, we compute the consistency
at that time as one. If the user was available for half the
time and unavailable for the other half, then the consistency
is zero. We compute the consistency values for the user in
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Fig. 4. Distribution of temporal correlation value for all machine pairs

steps of one hour for the entire 24 hour day and normalize
it by dividing by 24. We plot a cumulative distribution of the
rate of available time consistency in Fig. 3. A value of one
indicates that all users were consistent (always available at
all times or unavailable at all times) whereas a value of zero
implies that users are equally likely to be either available or
unavailable with no consistent way to predict their behavior.
A collaborative system prefers these values to be one so that
updates can be propagated to other users in a timely fashion.
From Fig. 3, we note that half the users had consistency values
of over 0.7. Only 5% of the users had values of 0.4 or lower.
These values suggest that, even though there may not be many
users who are available at all times, a large number of users
were predictable in terms of times that they are available (or
unavailable) and a small number of users consistently form a
recurring group. This behavior has significant implications for
developing targeted router nodes.

2) Temporal correlation of user pairs: Next, we plot the
cumulative distribution of the temporal correlation value for
all the user pairs in Fig. 4. This function was previously



Time of day Percentage of users seen in n days in all the eleven days
n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11

3 AM 59.5 11.2 7.17 4.28 3.00 2.26 1.96 1.57 2.36 1.57 1.62 3.59
3 PM 16.2 11.7 9.04 9.19 6.83 7.67 6.49 7.27 7.91 6.54 5.36 5.85
9 PM 34.2 11.3 5.31 5.06 5.11 5.35 5.65 5.99 5.90 7.08 5.01 4.12

TABLE I
NUMBER OF TIMES THAT USERS ARE REPEATEDLY SEEN DURING THE ENTIRE ELEVEN DAY TRACE PERIOD
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Fig. 5. Epidemic propagation rate for targeted group of size thirty

described by Bolosky et al. [11]. We computed the temporal
correlation value for all user pairs as follows: add one when
two users were either simultaneously available or unavailable
and subtract one when only one of the two users were simul-
taneously available. We sample the system every hour. The
results were normalized by dividing by the total sample count.
As we described in Section IV-B1, we prefer values of one as
it suggests that the pairs of users are either both available or
unavailable. On the other hand, a value of -1 suggests that the
behavior of the pair of users are unpredictable. From Fig. 4,
we note that over 50% of the users have a temporal correlation
of user pair values of 0.25. As compared to the observations
on a corporate desktop [11], which observed values of 0.5 for
50% of the users, our scenario showed a lower correlation.

3) Applying node temporal behavior to improve epidemic
propagation rates: Next, we applied the observed temporal
behavior of the nodes to improve the propagation rates.
Epidemic propagation rates were affected by the availability
of the router nodes. Propagating to a node that was always
available greatly improved the overall propagation rates. Users
who exhibited predictable availability were also expected to
have good propagation rates. We chose a random group of
thirty users during the work-week as follows: throughout the
five days (Mon-Fri), at least 50% of the users from this group
were simultaneously available. We plotted the propagation
rates amongst these users in Fig. 5. Note that not all users are
simultaneously available. Still, the propagation characteristics
of this set was significantly better than for choosing random
set of users (in Fig. 2); reaching 66% of the group almost

instantaneously and reaching 95% in about 16 hours. Similar
improvements were also observed against artificially doubling
the availability duration among random users.

V. CONCLUSION

This paper analyzed the viability of developing delay tol-
erant collaborative applications among wireless users in a
university campus setting. Earlier systems that used random
node mobility models had shown that updates in such systems
can be propagated quickly using epidemic algorithms. We
showed that the achieved epidemic propagation rates were far
worse than was reported in literature. Further work should
focus on developing robust mechanisms that can improve
propagation rates in realistic deployments.
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