
Improving Search Using a Fault-Tolerant Overlay in Unstructured P2P Systems∗

William Acosta Surendar Chandra
University of Notre Dame

{wacosta, surendar}@cse.nd.edu

Abstract

Gnutella overlays have evolved to use a two-tier topol-
ogy. However, we observed that the new topology had
only achieved modest improvements in search success rates.
Also, the new two-tier topology had not reduced the mes-
sage routing overhead and bandwidth consumption. In this
work, we used local information at each node to construct
an overlay, Makalu, that improved search performance and
reduced bandwidth consumption. The overlay maximized
the expansion from each node’s neighborhood while min-
imizing the latency to its neighbors. We show that for
a 100,000 node system, wild card searches using flood-
ing successfully resolved most queries within four hops for
object replications ratios as lows as 0.05% (50 randomly
distributed copies) with less than 3% duplicate messages.
Using attenuated bloom filters to route messages for ex-
act identifier searches, we show that Makalu resolved most
queries with less than ten messages for networks as large as
100,000 nodes. The performance of this search is compa-
rable to that of structured P2P systems. Finally, using data
from traffic traces of Gnutella in 2003 and 2006, we demon-
strated search success rates that were up to five times more
successful and required 75% less bandwidth on a Makalu
overlay than on a modern Gnutella overlay.

Keywords: P2P and Ubiquitous Computing

1. Introduction

The popularity of Gnutella [24] coupled with poor inter-
net connections of many users [27] exposed the fundamen-
tal performance issues of the Gnutella protocol. The origi-
nal protocol treated all peers equally. However, many peers
with poor network connectivity could not effectively han-
dle many connections to neighbors and could not support
the bandwidth demands of routing and forwarding queries.
As a result, search performance suffered; many queries ex-
perienced long queueing times or were not resolved at all.

∗This work was supported in part by the U.S. National Science Foun-
dation (CNS-0447671).

To address these problems, a new protocol (v0.6) [15] was
created. The new protocol treated poorly connected nodes
(leaves) differently than well connected nodes (ultra-peers).
The purpose of the new architecture was to shift the burden
of handling message routing away from leaf peers to more
well connected ultra-peers. To this end, the majority of mes-
sages handled in Gnutella are the responsibility of the ultra-
peers. Although these changes successfully addressed the
issue of bandwidth utilization at the leaves, they did not ad-
dress the problem of poor search performance in Gnutella.
We previously studied the long-term evolution of Gnutella
traffic as the network shifted from the v0.4 to v0.6 protocol
[1]. Between 2003 and 2006, query success rates experi-
enced by intermediate nodes only increased from 3.5% to
6.9%. Over 90% of all the bytes received by these interme-
diate nodes are wasted. Additionally, the number of mes-
sages sent per query has increased an order of magnitude
since 2003.

In this paper, we developed an overlay that improved
search performance in unstructured P2P networks. Our fun-
damental assertion is that search performance is directly af-
fected by the connectivity properties of the underlying over-
lay. In addition to improving search performance, good
connectivity results in an overlay that is fault-tolerant. Our
algorithm, Makalu, relies only on local information for each
node and maximizes the expansion from each node’s neigh-
borhood while minimizing the latency to its neighbors. We
show that our overlay exhibited expansion properties sim-
ilar to expander graphs[3, 12], which are graphs known to
have good connectivity. We exploited the good connectivity
of Makalu to solve the problem of efficient wild-card and
attribute searches using flooding. In particular, we show
that Makalu resolved most queries within four hops in a
100,000 node network while minimizing the number of du-
plicate messages that were generated. In addition to flood-
ing searches, we also exploited the expander graphs prop-
erties of Makalu to support efficient identifier searches in
unstructured P2P systems. Having access to a large set of
nodes within a few hops increased the amount of informa-
tion about the system available to each node. We lever-
aged this to implement a routing algorithm using attenuated

Bloom filters [25] to handle identifier search. We show that
this mechanism successfully resolved all queries with fewer
than 10 messages on a 10,000 node network and fewer than
20 messages on a 100,000 node network even when repli-
cation ratios for objects are as low as 0.1%. In applications
such as the Gnutella file-sharing network [14, 15] that oper-
ate with query success rates of less than 10%, we show ex-
perimentally that our overlay Makalu achieved higher query
success rates with lower bandwidth utilization and a lower
number of connections per node. Using query request rates
obtained from [1], we validated our design by showing that
a Makalu overlay resolved five times as many queries and
use 75% less bandwidth than Gnutella. Further, we show
that Makalu achieved this with fewer than 20% of neigh-
bors required by a typical Gnutella ultra-peer.

The rest of this paper is organized as follows. Section 2
describes the design of the Makalu overlay algorithm and
presents an analysis of the structural and connectivity prop-
erties of Makalu overlay topologies Section 3. We then
show that Makalu exhibits both good search performance
and scales well for searches in large networks in Section 4.
Next we provide some experimental results in Section 5 to
validate Makalu. In Section 6 we discuss related work and
provide concluding remarks in Section 7.

2. Design of the Makalu Overlay Algorithm

In this section, we describe the Makalu algorithm. We
first describe the intuition behind the design of the algorithm
and formally describe Makalu’s peer rating function.

2.1. Makalu Peer Rating Function

The central component of Makalu is the peer rating func-
tion. Each node makes decisions about accepting connec-
tions and pruning existing neighbors based on the result of
the peer rating function. The peer rating function computes
the relative connectivity and proximity for each neighbor.
The connectivity is determined by counting the number of
nodes that are reachable through the given neighbor and
only that neighbor. The rating function then divides the to-
tal number of nodes reachable through all neighbors by this
value to determine a relative connectivity value. A higher
value indicates a node that offers higher connectivity to the
rest of the network. Conversely, if most of the nodes reach-
able through a given neighbor are reachable through other
paths, then that neighbor isn’t contributing significantly to
the connectivity and its score would be lower. The prox-
imity of each neighbor is computed in a similar manner by
dividing the maximum latency to a neighbor by the latency
of each neighbor. A lower scores reflect neighbors that are
far away and thus have high latency costs. The proxim-
ity and connectivity scores for each neighbor are combined

and used to rank each neighbor.
Before formally describing the details of how ratings are

computed, we first define some terminology. V and E cor-
respond to the set of nodes and edges in a graph respec-
tively. du,v is the cost (latency) of the edge (u, v) ∈ E with
u ∈ V and v ∈ V . The neighborhood Γu of a node u, spec-
ifies the set of nodes directly connected to the given node.
The node boundary of a set of nodes, ∂S, represents the col-
lective neighborhoods of all nodes in the set. More specifi-
cally, it is the union of all the neighborhoods of the nodes in
the set minus the actual nodes in the set. The unique reach-
able set, Ru,v , specifies the set of nodes reachable from a
node, u, through another node, v, such that those nodes are
only reachable from u through v and not through any other
of u’s neighbors.

Node u computes the rating for a neighbor v using con-
nectivity information from v. It considers the set of nodes
that form v’s neighborhood, Γv , and subtracts from that set
any nodes reachable from another of u’s neighbors. This
forms the unique reachable set from u through v, Ru,v . The
algorithm then computes the ratio of the size of Ru,v to the
size of ∂Γu, all the nodes reachable through all of u’s neigh-
bors (the node boundary of the neighborhood of u). The
ratio of the maximum latency to its neighbors, dmax, to the
latency to v, du,v is then computed. The algorithm then
combines these two ratios and computes a rating for v using
the utility function: Fu,v = α

|Ru,v|
|∂Γu| + β dmax

du,v
where dmax

is the maximum latency to a neighbor of u and α and β
are weighting factors for connectivity and proximity respec-
tively. If α = 1 and β = 0, the algorithm is biased toward
creating an overlay that is well connected but possibly with
poor communication costs. If instead α = 0 and β = 1,
the algorithm would create an overlay that has low com-
munication costs at the expense of connectivity. Currently,
we give equal weight to both connectivity and proximity
and set α = β = 1 to generate an overlay that treats both
connectivity and proximity with equal weight. The result-
ing ranks are then sorted and the lowest ranking neighbor is
disconnected. At each stage the algorithm makes a decision
to maximize the utility of its neighbors. Each node seeks to
maximize its connection to the P2P network while working
within its own capacity constraints. In particular, each node
can have different degrees as dictated by its connectivity
on the physical network. Having nodes of different degrees
doesn’t affect the algorithm as each node selects its required
number of peers such that the selected peers maximize the
utility function F . Additionally, when the degree of a node
changes in response to a change in the available bandwidth,
the node initiates a pruning mechanism that evaluates its
current neighbors using the utility function F and pruning
its neighbors with the lowest utility cost until the requisite
number of neighbors is reached.

In the following sections we describe the requirements

of an overlay to support improved search performance and
present an algorithm that uses the peer rating function to
create an overlay that meets these requirements.

2.2. Makalu Connection Management

Any node joining the overlay needs the address of at least
one seed peer. It uses the seed as the starting point of a ran-
dom walk in order to gather a list of candidate peers. Once a
suitable set of candidates is obtained, the node may attempt
to establish connections to those nodes in its candidate set
until it has obtained sufficient neighbors.

Once a node is connected, it switches to a management
phase. In this phase, the node accepts incoming connections
as part of its participation in the network. If the number of
connections exceeds the maximum number of connections
for the node, it proceeds to prune the lower quality con-
nections (neighbors). The ranking of neighbors is done by
computing a score for each neighbor using the Makalu peer
rating function. The basic algorithm for managing connec-
tions is described below:

Function:Manage()
repeat

accept connections
while neighbors > max connections do

compute rating for each neighbor
remove neighbor with lowest rating

end
until disconnected ;

Formally, the Makalu algorithm selects neighbors that
maximize the node expansion from the local node’s neigh-
borhood while minimizing the cost to its neighbors. The
algorithm computes a rating for each neighbor that factors
in that neighbor’s proximity and connectivity to the rest of
the network. Preference is given to neighbors that are near
(low latency) and neighbors that provide good connectivity
to the rest of the overlay. When a node needs to determine
whether to make a connection to a new peer, it provisionally
considers the candidate peer as its neighbor and computes a
rating for all of its neighbors including the candidate peer.
The node then keeps the connections with the best rating.
The number of neighbors for each node can be controlled
by the node itself and reflects the number of connections
that the node’s current available bandwidth can support.

3. Analysis of Makalu Topology

In the previous section we described the Makalu algo-
rithm. In this section we show that Makalu generated over-
lays with good connectivity properties. We also show that

Makalu’s overlays exhibited better fault tolerance and per-
formance than the current Gnutella overlays.

3.1. Analysis Setup

For our experiments, we developed our own network
simulator. To validate the topology creation and mainte-
nance mechanisms, we simulated the systems using vari-
ous physical network models. First, we created a synthetic
network model where nodes are assigned coordinates on a
plane. The network latency for this model is the Euclidean
distance between the nodes. In addition to the Euclidean
network model, we used a GT-ITM Transit-Stub [32] net-
work model as well as an artificial network model based on
an expanded version of the the all-pairs ping times between
PlanetLab node collected by Stribling [28].

We generated Makalu topologies using the algorithm de-
scribed in the previous section. To simulate variable node
capacities, we randomly assigned node degrees to each
node. Even for large simulations where the number of nodes
was greater than 100K, a mean node degree of 10 to 12 was
sufficient to obtain good performance. For comparison, we
created a randomized power law topology (Gnutella v0.4)
using the parameters described in [27, 26] as well as pa-
rameters that we extracted from our more current crawls
of the Gnutella network and from [29, 24] for the modern
Gnutella v0.6 two-tier ultra-peer topologies. k-regular ran-
dom graphs are expected to be good expanders, but are dif-
ficult to maintain in dynamic P2P environments. Therefore,
we use k-regular random graphs only as a theoretical op-
timal graph for comparison purposes. The k-regular ran-
dom graphs were generated using the algorithm described
by Kim et. al. [17].

In the following sections, we compare the path costs and
structural properties of Makalu overlays to the properties
of expander graphs and show the relationship between the
structural properties of an overlay and the overlay’s toler-
ance to node failures.

3.2. Graph Diameter and Characteristic
Paths

Our aim was to create topologies that were compact with
low average communication costs. We used graph diameter
and characteristic path length and cost to evaluate our over-
lay. For this experiment, we computed All-Pairs Shortest
Paths between each node in the overlay networks and kept
track of cost both in terms of hops and physical network la-
tency. This step is computationally intensive and does not
scale well for analyzing networks greater than a few thou-
sand peers. For this reason, we limited the network size
to 10,000. The Makalu topology had an average shortest
path cost of 1205.905 compared to 1629.639 of a k-regular

random graph. The Gnutella v0.4 and v0.6 topologies had
average path costs of 2915.106 and 1370.809 respectively.
Similarly, when we examined the graph diameter, Makalu
topologies were compact with an average diameter of 5.
This was slightly lower than the diameter of a modern two-
tier Gnutella topology and a k-regular random graph, both
of which had an average diameter of 6. The average di-
ameter of the classic Gnutella power law topology was 16.
Makalu generated topologies with both low diameter and
low average communication costs. In the next section we
examine the structural properties of Makalu.

3.3. Structural and Connectivity Properties

We next examined Makalu’s connectivity properties.
Good connectivity is implied by high expansion. How-
ever, determining the expansion of a graph is co-NP-
complete [8]. Therefore, we turned to spectral graph the-
ory [8, 16, 11] to get approximations for the expansion of
a graph. We used the eigenvalue spectrum of the Lapla-
cian matrix representation of a graph [8] to determine the
graph’s algebraic connectivity. The algebraic connectivity
describes compactness of a graph; higher values of alge-
braic connectivity indicate a more connected and compact
graph. Given the eigenvalues of the Laplacian of a graph
in increasing order, the second smallest eigenvalue, λ1, is
the algebraic connectivity [10]. The algebraic connectivity
gives us the following bounds on the vertex expansion of a
graph: λ1(G) ≤ v(G) ≤ dmin(G) where v(G) is the ver-
tex connectivity of the graph and dmin(G) is the minimal
degree of any vertex in G. We can use this to show that
a graph with high algebraic connectivity also has high ex-
pansion. For this experiment, we computed the Laplacian
eigenvalue spectrum of the overlays generated by each al-
gorithm. The algebraic connectivity for a k-regular random
graph was 2.7315. The Makalu overlay had an algebraic
connectivity of 2.7189, close to the ideal of a k-regular ran-
dom graph. The Gnutella v0.4 topology had a very low al-
gebraic connectivity (0.035); this is a known consequence
of its power law structure. The Gnutella v0.6 topology had
better connectivity than the v0.4 topology (0.936), but it is
significantly lower than Makalu’s connectivity.

3.4. Fault Tolerance of Makalu

Next, we explored the effect of node failures on the con-
nectivity and properties of the topologies created by the dif-
ferent algorithms. In particular, we are concerned with de-
termining the resiliency of the topologies to the failure of
the most highly connected nodes as these nodes represent
important nodes in the network. In the interest of space,
we present only the results from failing the most highly
connected nodes. For this analysis we generated the vari-

Figure 1. Normalized Laplacian eigenvalue
spectrum when the most highly connected
nodes fail and are removed from the Makalu
topology.

ous topologies and induced a non-recoverable and instan-
taneous failure of the most highly connected nodes as well
as for random nodes. This simulates a worst-case failure
model where all failed nodes disappear instantly. The anal-
ysis is performed on a snapshot of the overlay immediately
after the failure occurs so that the remaining nodes are not
given the opportunity to recover. We need to compare the
connectivity of graphs of different sizes to evaluate how the
loss of nodes affect their connectivity. The standard Lapla-
cian eigenvalue spectrum is not well-suited for this as it can
only compare graphs of the same size. Instead, we employ
the normalized Laplacian matrix [8] of the graph.

The normalized Laplacian matrix constrains the result-
ing eigenvalues to the interval [0,2]. Each data point is de-
fined to be (xi, yi) where xi is the normalized rank of the
ith eigenvalue given by xi = ri

n−1 and yi is the ith eigen-
value. The eigenvalues are arranged in increasing order, ri

denotes the rank of the ith eigenvalue. This results in graphs
with x values in the interval [0:1] and y values in the interval
[0:2]. The multiplicity of eigenvalue 0 describes the number
of connected components in the graph [8]. The multiplic-
ity of eigenvalue 1 is related to the number of “edge” nodes
that are weakly connected to the network [31]. A higher
multiplicity of eigenvalue 1 implies more weakly connected
“edge” nodes.

For this experiment, we plotted the normalized Lapla-
cian spectrum of the overlay created by each algorithm.
As nodes fail, we preferred the plots to remain similar to
the normalized Laplacian spectrum of a k-regular random
graph. As shown in Figure 1, the multiplicity of eigenvalue

0 remained at one for the Makalu topology. This means
that although node failures exist, the overlay remained fully
connected. Additionally, we observe that the structure of
the Makalu topology did not vary significantly with added
failures. The remaining nodes did not become weakly con-
nected. We can see this in Figure 1 by noticing that the
multiplicity of eigenvalue 1 remained low. Even with 30%
node failures, the Makalu algorithm maintained a spectrum
that was similar to the ideal spectrum of a k-regular ran-
dom graph. This is important because the structural proper-
ties, as we will see in the next section, have implications on
the ability of the overlay to support efficient search mecha-
nisms.

4. Search Performance Analysis

In the previous sections we described Makalu and
showed that it achieved the desirable properties of good
connectivity needed to support efficient searches. Under
the failure of the most highly connected nodes, a Makalu
overlay’s connectivity did not vary significantly thus allow-
ing the remaining nodes to stay well connected. Addition-
ally, Makalu created overlays with good connectivity using
only information local to each node. In this section, we
show how Makalu’s good connectivity yielded improved
search performance. We first describe our experimental
setup and then present our analysis for flooding and iden-
tifier searches.

4.1. System Setup

For our experiments we created a simulator to study the
performance of the different search mechanisms on differ-
ent topologies. We performed our experiments with net-
works ranging in size from 100 nodes to 100,000 nodes.
In this paper, replication ratio represents the percentage of
nodes that contain a replica for a given object. Addition-
ally, the nodes that contain a replica for a given object were
chosen uniformly at random. We compared our results to
search in a classic Gnutella power law topology and to a
modern Gnutella two-tier ultra-peer topology. In the case
where multiple replicas of an object existed in the system,
the query was considered to be successfully resolved if at
least one of the replicas was located. We performed 100
separate runs with each run issuing 1,000 queries. Results
reported represent the mean of these runs.

4.2. Flooding Performance Analysis

In this section, we analyzed the behavior of controlled
flooding on a Makalu overlay. For our experiments, we
placed data objects uniformly at random on nodes according
to the specified replication ratio for each object. Because

most objects in file-sharing systems were not highly repli-
cated, we limited our analysis to replication rates of less
than 1%. We performed a flooding search for each unique
object in the system from random nodes. We used query ID
caching for duplicate query suppression. We recorded the
number of queries that were successfully resolved as well
as the number of messages sent for each query and the num-
ber of unique nodes that were visited by the flood. We also
tracked the average messages received at each node and the
number of replicas located by the query. For flooding on
the Gnutella v0.6 (two-tier ultra-peer) topology, we used a
modified flooding algorithm that simulates the behavior of
current Gnutella query routing. For low replication ratios, a
small percentage of queries required a flood to reach almost
all nodes in the network. In these cases, the flood needed to
propagate beyond reasonable TTL limits and thus resulted
in higher mean messages per query. For a network size of
100,000 nodes, we used a TTL for floods that reflects real-
istic TTL limits observed in Gnutella traces and allow for
floods to resolve most (> 95%) of the queries.

We present a summary of these results in Table 1.
The comparatively low node degree and high expansion of
Makalu topologies resulted in fewer messages per query for
similar TTL values when compared to Gnutella topologies.
Compared to the Gnutella v0.4 power law topology, Makalu
reduced the TTL required by 50% while reducing the num-
ber of messages by a factor of four. The reduction in the
number of messages is greater when comparing Makalu to
the modern Gnutella v0.6 topology under low replication ra-
tios (0.1% and 0.05%). In these cases, the low node degree
and high expansion of Makalu allowed for most queries to
be resolved with fewer than 7,000 messages. The high de-
gree of ultrapeers in the Gnutella v0.6 topology required
more than 7 times as many messages. The Gnutella v0.6
topology did reduce the number of messages routed to low-
capacity (leaf) peers compared to the earlier v0.4 topology.
However, our simulations verify the results presented in [1],
which showed that ultra-peers in the modern Gnutella topol-
ogy are responsible for the majority of the query routing
bandwidth of the system. In particular, the high node de-
gree of ultra-peers resulted in many outgoing messages sent
per incoming query. This is reflected in the high number of
messages required to satisfy queries for the Gnutella v0.6
topology as shown in Table 1. One of the benefits of Makalu
is that the outgoing message rate per query remained low
without affecting the ability to resolve most queries.

4.3. Makalu Flooding Efficiency

In the previous section, we showed that Makalu flooding
successfully resolved queries within a few hops even for
low replication ratios. We then focused on the efficiency
of Makalu flooding. Specifically, we were interested in the

Gnutella v0.4 (power law) Gnutella v0.6 (two-tier) Makalu
Replication Rate Messages/Query Min TTL Messages/Query Min TTL Messages/Query TTL
0.05% 30,557.96 7 51,184.12 4 6,783.32 4
0.1% 24,155.84 7 51,127.22 4 6,668.36 4
0.5% 11,959.16 6 6,444.22 3 769.84 3
1% 11,942.28 6 6,426.56 3 758.48 3

Table 1. Message per query and minimum TTL required to resolve queries on each topology. Network
size: 100,000 nodes

number of duplicate messages. Makalu had good connec-
tivity between peers (high expansion) while maintaining a
low average node degree. These properties allowed flooding
queries to be propagated to many nodes with few duplicate
messages. With a TTL of 4, a flood on a Makalu topology
generated approximately 6,500 messages on a 100,000 node
network. Of these, only 2.7% were duplicates where the
query reached the same node more than once. With a TTL
of 4, flooding in Makalu resolved all queries for replication
ratios above 0.05%. When the replication ratio was set at
0.05% and a TTL of 4 was used, 95% of the queries were
satisfied. For relatively high replication ratios (≥ 0.5%),
a TTL of 3 resolved all queries with less than 800 mes-
sages on a 100,000 node network. Flooding on Makalu was
efficient, even for low replication ratios (e.g., 0.05%), as
most queries were resolved with relatively few messages
(< 10, 000). In addition, the high expansion of Makalu re-
duced the number of duplicate messages sent because each
hop in the flood reached unique nodes.

4.4. Flooding Performance Under Low
Replication Scenarios

A high expansion implies that from any node, a large
percentage of the nodes in the network are reachable within
only a few hops. However, the property that allows for such
large coverage also implies that a flood that travels deep into
the network will generate many duplicate messages. From
any node in a graph with high, we expect a large num-
ber of disjoint paths leaving the node [12, 13]. As each
of these paths reach further out, there are fewer unvisited
nodes that each path can reach. This leads to multiple paths
converging to the same node. We call the point at which
multiple paths begin to reach the same nodes the Conver-
gence Boundary. The Convergence Boundary occurs when
roughly half the nodes have been visited; it coincides with
approximately half the diameter of a graph. Flooding in ex-
pander graphs have two phases: an expanding phase and
a converging phase. While the flood expands toward the
Convergence Boundary, the flood is in the expanding phase
and when it crosses the Convergence Boundary, it begins

the converging phase. Because paths are disjoint in the ex-
panding phase, flooding generates few duplicate messages
in the expanding phase. However, once the flood crosses
the Convergence Boundary, there will be a significant in-
crease in the number of duplicate messages. Epidemic al-
gorithms [30, 9, 19] might be deployed beyond the Conver-
gence Boundary to reduce the number of such duplicates.
For realistic replication ratios, Makalu flooding is efficient.
In circumstances where the replication ratio is very low and
every node must be reached, a DHT-based flooding mech-
anism such as Structella [5] may give better performance.
Nevertheless, even for a replication ratio such as 0.01% (or
10 nodes out of 100,000), flooding on Makalu resolved 56%
of queries within 4 hops and an approximately 6,500 mes-
sages.

4.5. Scalability of Flooding as the Size of
the Network Increased

In the previous section, we showed that we can exploit
the properties of a Makalu topology to perform an efficient
flooding search. In this section we show the performance
of Makalu flooding on networks of various sizes. We were
interested in analyzing the interplay between the minimum
TTL requires to satisfy queries and the number of messages
generated per query as the size of the network increased. In
this experiment, we fixed the replication ratio of objects and
varied the size of the network. Although we only present
results for a replication ratio of 1%, our results for vari-
ous replication ratios from 0.05% to 0.5% showed similar
results. In Figure 2 we plotted the average number of mes-
sages sent per query as the size of the network increased
using a fixed replication ratio of 1% and a fixed TTL of
4. Note that this is a log-log plot. We see evidence that
even though the number of messages increased as the net-
work grew, floods on larger networks sent proportionally
fewer messages with respect to the size of the network. The
number of messages sent grew slower than linearly, which
means that flooding on a Makalu topology scaled well as
the size of the network increased.

In Figure 3, we show how the relationship between suc-

 1

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000

M
es

sa
ge

s/
Q

ue
ry

Network Size

Messages per Query vs. Network Size - 1% Replication

Number of Messages

Figure 2. Messages per query vs. network
size for various Makalu network sizes us-
ing a 1% replication ratio (log-log plot). The
messages per query use a fixed TTL of 4
which yields a 100% success rate in resolv-
ing queries.

cess rate and TTL changes as the network size changes. We
see that the success rates were similar across all network
sizes. This behavior was expected of the Makalu topology.
Because the capacity of each node remained fixed as the
network grew, smaller networks had limited opportunity to
maximize their connectivity. So, even though larger graphs
had more nodes, their “spread” within the first few hops
was not restricted. Floods on larger graphs reached propor-
tionally more nodes at each hop. This means that although
larger graphs sent more messages, the flood did not need to
travel as far because it was likely to locate a replica in fewer
hops.

4.6. Indexed Identifier Search

In this section, we analyze the performance of the sys-
tem in resolving searches where the identifier of the desired
object is known in advance. We show that the expander-
graph properties of our overlay led to favorable conditions
for success of this approach. We examined indexed identi-
fier searches using attenuated Bloom filters [25]. A Bloom
filter is a compact representation of a large set of objects that
allows one to easily test whether a given object is a mem-
ber of that set [4]. An attenuated Bloom filter is a hierarchy
of Bloom filters, each of which contains aggregate informa-
tion about some set of nodes. Specifically, the Bloom filter
at level i represents the aggregate content store on nodes
that are i hops away. Because deeper levels of the attenu-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

Su
cc

es
s

ra
te

TTL

Makalu Success Rate vs. Search TTL - 1.0% Replication

100 node network
200 node network
500 node network

1,000 node network
2,000 node network
5,000 node network

10,000 node network
100,000 node network

Figure 3. Success rate vs. TTL of flooding
search for various Makalu network sizes using
a 1% replication ratio.

ated Bloom filter contain aggregate information for an in-
creasingly larger set of nodes, the corresponding Bloom fil-
ter will be more populated thus increasing the false positive
rate. For this reason, the results from Bloom filters near the
top of the hierarchy are given more weight when comput-
ing the score because their false positive rate is expected
to be low. The high expansion properties of the Makalu
overlay allowed the attenuated Bloom filter to function ef-
ficiently since each node had access to information about
a large number of nodes. The attenuated Bloom filter cap-
tured information about a large portion of the network while
limiting the number hops in the network needed to obtain
this information. When two peers established a connec-
tion, they exchanged routing tables and their correspond-
ing attenuated Bloom filters. The routing tables and atten-
uated Bloom filters capture information about each peers
neighborhood. In this way, peers need only communicate
with their direct neighbors to discover information about
their neighborhood. Searches using attenuated Bloom filters
were resolved quickly because at each hop in the search, the
potential function guiding the search was able to make high
quality decisions.

For this experiment, we generated a 100,000 node topol-
ogy and populated the nodes with objects where each object
was replicated uniformly at random on a given percentage
of the nodes. We then ran the search algorithm using an at-
tenuated Bloom filter [25] with a depth of three on our sim-
ulator and recorded the number of messages sent, number
of nodes that were visited, and the number of queries that
were successfully resolved. Figure 4 plots the percentage
of successful queries versus the TTL used for each query.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

Su
cc

es
s

Ra
te

TTL

Makalu Success Rate vs. Search TTL - Attenuated Bloom Filter Search

0.1% Replication
0.5% Replication
1.0% Replication

Figure 4. Success rate vs. TTL of attenuated
Bloom filter search for various replication ra-
tios using Makalu on a 100,000 node network.

For relatively high replication rates (0.5% and 1%), most
queries (>95%) were resolved in less than five hops and all
queries were resolved within 8 hops. For a lower replication
rate of 0.1%, most queries (> 75%) were resolved within
ten hops and over 95% of queries were resolved within 15
hops. Identifier searches in Makalu were efficient because
the attenuated Bloom filter at each node captured the con-
tent contained in a large number of nodes; this is a conse-
quence of Makalu’s expander graph properties.

4.7. Summary of Results

In this section we showed that a Makalu overlay effec-
tively supported efficient searches. We showed that Makalu
resolved flooding searches with fewer messages per query
than Gnutella. Further, we showed that Makalu scaled
well as the number of nodes in the overlay increased. We
showed that the number of messages per query increased
sub-linearly with the size of the network. Increasing the
network size by two orders of magnitude only increased the
number of messages per query by about 2.6 times. In ad-
dition to flooding searches, we showed that Makalu sup-
ported efficient identifier searches. We used attenuated
Bloom filters for probabilistic routing of identifier queries
and showed that even on networks as large as 100K nodes,
most queries were resolved in fewer than 10 hops. In
the next section, we validate Makalu against data collected
from the state of Gnutella in 2003 and 2006.

5. Experimental Validation

In addition to simulation results, we were interested in
evaluating our design choices against a current active and
large-scale P2P system. The analysis in [1] provides data
on query rates and bandwidth utilization of Gnutella traf-
fic in 2003 and 2006. In 2003, a peer received over 400K
query messages in a 2 hour interval, or approximately 60
queries per second. In 2006, this number was drastically re-
duced to 23K queries in a 2 hour interval, or about 3 queries
per second. However, in 2006, queries were propagated by
ultra-peers to a mean of 38 peers, compared to 4 peers in
2003. This corresponds to an outgoing query bandwidth of
103 kbps in 2006, compared to over 130 kbps in 2003 re-
sulting in little net bandwidth savings compared to the large
reduction in incoming query traffic.

Gnutella Makalu
Outgoing Msgs per query 38.439 8.5
Outgoing Msgs per second 124.16 27.45
Outgoing Bandwidth 103.4 kbps 23.04 kbps
Query Success Rate 6.9% 36%

Table 2. Traffic comparison between Makalu
and Gnutella Search Traffic

Applying these findings to flooding search on a Makalu
topology resulted in a significant improvement of both
search performance and bandwidth utilization. Using the
current Gnutella incoming query traffic metrics, we calcu-
lated the bandwidth used for a flooding search on a Makalu
topology with 100,000 nodes and mean node degree of 9.5.
We evaluated Makalu searches on our simulator assuming
a worst case scenario where each object existed on only 1
node in the 100,000 node network. The measured success
rates captured the worst case performance of search. On av-
erage, a search had to cover a large portion of the network.
The results are shown in Table 2. With a mean incoming
query traffic rate of 3.23 queries per second and a mean
query size of 106 bytes, a search on a Makalu topology
generated 8.5 outgoing messages per query and 0.9 kB per
query or 23.04 kbps. Using a TTL of 5, simulation results
showed that in a 100,000 node network with mean node de-
gree of 9.5, flooding searches in Makalu resolved 36% of
the queries. In comparison, the current Gnutella protocol
can generate up to 103.4 kbps of outgoing query traffic and
the success rate experienced by the traffic capturing client
was only 6.9%. Currently, a Gnutella ultra-peer can have
many neighbors; our traffic capturing client had up to 64
neighbors with 35 to 40 ultra-peer neighbors active at any
given point in time. Yet, such a large number of neigh-
bors only yields a success rate visible to the client of less

than 10%. A similar search on Makalu resolved 36% of the
queries with 75% less neighbors per node and, in turn, 75%
less outgoing bandwidth consumption.

6. Related Work

Previous research has investigated various search tech-
niques in unstructured P2P networks. For example, random
walks have been proposed as an alternative to flooding in
unstructured P2P networks [20]. Random walks can effec-
tively reduce the number of messages sent per query at the
expense of increased response time for the query. Search
performance using random walks depends on an overlay
having connectivity properties that allow for the walk to
traverse the overlay efficiently. Other work [2] relied on
searches being routed to the highly connected nodes since
these nodes have access to the largest number of neigh-
bors. However, this approach placed a great burden on these
highly connected nodes as they must route the majority of
queries. Fundamentally, searches required access to infor-
mation at each node in order to effectively be resolved. An
overlay with low connectivity at most peers as in power law
topologies lacks the ability to provide searches with the nec-
essary information to resolve the queries efficiently. Gia [7]
attempted to improve the scalability of power law systems
by choosing high capacity nodes for immediate peers and
replaced the flooding search with a random-walk search.
However, Gnutella’s topology is no longer a power law
topology thus limiting Gia’s effectiveness in Gnutella-like
systems. Additionally, power law topologies are suscep-
tible to targeted attacks. Makalu’s design was geared to
providing fault-tolerance and facilitating current and future
searches in unstructured P2P with little modification to the
search mechanisms.

Our work showed that Makalu resolved most queries
given a reasonable TTL. However, we do not mandate a
specific mechanism for selecting the TTL. The TTL may be
set as a parameter of the system as in the current Gnutella.
Alternatively, a dynamic TTL selection mechanism can be
used to adapt the TTL for queries at run-time. Chang and
Liu in [6] described a dynamic programming mechanism
that selected an appropriate TTL when the probability dis-
tribution of the object locations was known in advance.
When the distribution was not known in advance, they used
a randomized mechanism to select an appropriate TTL. This
approach can be integrated into a Makalu search that relies
on TTL to control the spread of queries.

Early work in analyzing peer-to-peer systems identified
several key features of P2P file-sharing systems. First,
Saroiu et. al. [27] and Ripeanu et. al. [26] studied the
Gnutella file-sharing network to determine the structure of
the Gnutella topology and the characteristics of the network
connectivity and file-sharing behavior of users. They found

that a large percentage of nodes had slow and low band-
width network connectivity. Additionally, they reported
that the overlay topologies have power law degree distri-
butions. More recently, Stutzbach et. al. [29] show that
the modern Gnutella two-tier ultra-peer architecture does
not follow a true power law distribution since ultrapeers try
to maintain a fixed number of connections. In [23] Busta-
mante et al characterized the behavior of Gnutella [14] and
Overnet/eDonkey [22]. The authors showed that Gnutella’s
queuing time was significantly slower than Overnet’s due,
in part, to Overnet’s use of a distributed hash table (DHT)
[21] to speed up keyword lookups. Our prior study of the
long-term analysis of Gnutella traffic [1] revealed that more
than 90% of the bandwidth used to process queries at an
ultra-peer is wasted. Our goal in this work was to develop
a P2P system that can improve search performance by cre-
ating an overlay that has good connectivity similar to ex-
pander graphs.

Law et. al. [18] explored the use of expander graphs
as overlays for P2P networks. Their approach involves the
use of 2d-regular multigraphs where the edges of the graph
are composed of d Hamilton cycles. They prove that their
algorithm generates an overlay that is an expander graph
with high probability. Although regular random graphs are
theoretically good expanders, creating a P2P system us-
ing k-regular random graph on real networks poses several
problems. First, building and maintaining regular random
graphs in a dynamic and distributed network is expensive
and requires a great deal of coordination and communica-
tion. Routing on such an overlay depends on the overlay
being stable. In the presence of node churn, maintaining
a stable overlay that is a k-regular random graph becomes
increasingly complex. Second, the uniform node degree re-
striction of k-regular graphs does not map well to real net-
works. There can be large variability in the network con-
nectivity of the nodes in the network. Forcing a fixed degree
causes some nodes to be over-committed while communica-
tion capacity of other nodes are under-utilized. Instead, our
algorithm relies only on local information for each node and
tries to maximize the expansion from each node’s neigh-
borhood while minimizing the latency to its neighbors. We
show that the resulting overlays exhibit similar connectiv-
ity properties to expander graphs without requiring global
coordination or a fixed number of connections at each node.

7. Conclusion

In this paper, we showed that a distributed algorithm can
create overlays that approximate the structure of expander
graphs using only local information while allowing nodes
to have varying degrees. We showed that this algorithm was
able to withstand the failure of over 30% of the nodes in the
system while still maintaining good communication costs

and search performance. For low replication ratios, Makalu
resolved most queries within 4 hops and 6,500 messages
in a 100,000 node network with less than 5% of the mes-
sages sent being duplicate messages. We also showed that
Makalu scaled well to over 100,000 nodes with respect to
flooding search performance. Additionally, Makalu over-
lays can be exploited for their high expansion to support
efficient indexed identifier searches using mechanisms such
as attenuated Bloom filters to route the queries. In this ap-
proach, most searches were resolved in less than 10 mes-
sages (hops) for replication ratios as low as 0.01%. We
also showed experimentally that Makalu achieved higher
query success rates than Gnutella searches while reducing
the bandwidth consumed at each node.

References

[1] W. Acosta and S. Chandra. Trace driven analysis of the
long term evolution of gnutella peer-to-peer traffic. In Pro-
ceedings of the Passive and Active Measurment Conference
(PAM’07), 2007.

[2] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A.
Huberman. Search in power-law networks. Physical Review
E, 64, 2001.

[3] N. Alon. Eigenvalues and expanders. Combinatorica,
(6):83–96, 1986.

[4] B. H. Bloom. Space/time trade-offs in hash coding with al-
lowable errors. Commun. ACM, 13(7):422–426, 1970.

[5] M. Castro, M. Costa, and A. Rowstron. Should we build
gnutella on a structured overlay? In Proceedings from
the 2nd Workshop on Hot Topics in Networks (HotNets-II),
2003.

[6] N. Chang and M. Liu. Revisiting the ttl-based controlled
flooding search: optimality and randomization. In Proceed-
ings of the 10th annual international conference on Mobile
computing and networking, pages 85–99. ACM Press, 2004.

[7] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. Making gnutella-like p2p systems scalable. In
Proceedings of the 2003 conference on Applications, tech-
nologies, architectures, and protocols for computer commu-
nications, pages 407–418. ACM Press, 2003.

[8] F. R. K. Chung. Spectral Graph Theory. American Mathe-
matical Society, 1997.

[9] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenkcr, H. Sturgis, D. Swinehart, and D. Terry. Epi-
demic algorithms for replicated database maintenance. In
PODC ’87: Proceedings of the sixth annual ACM Sympo-
sium on Principles of distributed computing, pages 1–12,
New York, NY, USA, 1987. ACM Press.

[10] M. Fiedler. Algebraic connectivity of graphs. Czech. Math
J., 23:298–305, 1973.

[11] A. Frangiono and S. S. Capizzano. Spectral analysis of (se-
quences of) graph matrices. SIAM Journal of Matrix Analy-
sis and Applications, 23(2):339–348, 2001.

[12] A. M. Frieze. Edge-disjoint paths in expander graphs. SIAM
Journal on Computing, 30(6):1790–1801, 2001.

[13] A. M. Frieze and L. Zhao. Optimal construction of edge-
disjoint paths in random regular graphs. Combinatorics,
Probability and Computing, 9(3):241–263, May 2000.

[14] Gnutella protocol v0.4.
http://dss.clip2.com/GnutellaProtocol04.pdf.

[15] Gnutella protocol v0.6. http://rfc-
gnutella.sourceforge.net/src/rfc-0 6-draft.html.

[16] N. Kahale. Eigenvalues and expansion of regular graphs.
Journal of the ACM, 42(5):1091–1106, 1995.

[17] J. H. Kim and V. H. Vu. Generating random regular graphs.
In Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing, pages 213–222. ACM Press, 2003.

[18] C. Law and K.-Y. Siu. Distributed construction of random
expander networks. In IEEE INFOCOM, 2003.

[19] C. Lindemann and O. P. Waldhorst. Exploiting epidemic
data dissemination for consistent lookup operations in mo-
bile applications. SIGMOBILE Mob. Comput. Commun.
Rev., 8(3):44–56, 2004.

[20] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
replication in unstructured peer-to-peer networks. In Pro-
ceedings of the 16th international conference on Supercom-
puting, pages 84–95. ACM Press, 2002.

[21] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer
information system based on the xor metric. In IPTPS ’02:
1st International Workshop on Peer-to-Peer Systems, 2002.

[22] Overnet. http://www.overnet.org/.
[23] Y. Qiao and F. E. Bustamante. Structured and unstructured

overlays under the microscope - a measurement-based view
of two p2p systems that people use. In Proceedings of the
USENIX Annual Technical Conference, 2006.

[24] A. H. Rasti, D. Stutzbach, and R. Rejaie. On the long-term
evolution of the two-tier gnutella overlay. In IEEE Golbal
Internet, 2006.

[25] S. C. Rhea and J. Kubiatowicz. Probilistic location and rout-
ing. In Proceedings of the 21st Annual Joint Conference of
the IEEE Computer and Communications Societies (INFO-
COM 2002), June 2002.

[26] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the
gnutella network: Properties of large-scale peer-to-peer sys-
tems and implications for system design. IEEE Internet
Computing Journal, 6(1), 2002.

[27] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measure-
ment study of peer-to-peer file sharing systems. In Pro-
ceedings of Multimedia Computing and Networking 2002
(MMCN ’02), San Jose, CA, USA, January 2002.

[28] J. Stribling. Planetlab all pair ping data.
http://www.pdos.lcs.mit.edu/∼strib/pl app/.

[29] D. Stutzbach, R. Rejaie, and S. Sen. Characterizing unstruc-
tured overlay topologies in modern p2p file-sharing systems.
IEEE/ACM Transactions on Networking, 2007.

[30] W. Vogels, R. van Renesse, and K. Birman. The power
of epidemics: Robust communication for large-scale dis-
tributed systems, 2003.

[31] D. Vukadinovic, P. Huang, and T. Erlebach. On the spectrum
and structure of internet topology graphs. In In proceedings
of Innovative Internet Community Systems (I2CS), Khlungs-
born, Germany, June 2002.

[32] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to
model an internetwork. In IEEE Infocom, volume 2, pages
594–602, San Francisco, CA, March 1996. IEEE.

