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Abstract

Mobile computers consume significant amounts of en-
ergy when receiving large files. The wireless network in-
terface card (WNIC) is the primary source of this energy
consumption. One way to reduce the energy consumed is
to transmit the packets to clients in a predictable fashion.
Specifically, the packets can be sent in bursts to clients, who
can then switch to a lower power sleep state between bursts.
This technique is especially effective when the bandwidth of
a stream is small.

This paper investigates techniques for saving energy in
a multiple-client scenario, where clients may be receiving
either UDP or TCP data. Energy is saved by using a trans-
parent proxy that is invisible to both clients and servers.
The proxy implementation maintains separate connections
to the client and server so that a large increase in trans-
mission time is avoided. The proxy also buffers data and
dynamically generates a global transmission schedule that
includes all active clients. Results show that energy savings
within 10-15% of optimal are common, with little packet
loss.

1 Introduction

The wireless network interface card (WNIC) often
causes the largest power drain in a mobile client. This is es-
pecially true in (1) streaming multimedia applications and
(2) ftp or HTTP file downloads. In both situations, packets
arrive frequently (though not always predictably) requiring
the WNIC to remain in idle or receive mode, both of which
use significant amounts of energy. Fortunately, a proxy may
buffer packets for a client and then send them to the client

in bursts at regular intervals. This allows the client to keep
its WNIC in sleep mode while not receiving data; this mode
consumes an order of magnitude less power. This is espe-
cially effective when the bandwidth of the stream is low,
in which case a large fraction of the overall energy can be
saved.

There are many challenges in the implementation of such
a scheme. Ideally, the proxy should be transparent, so that
clients can save energy with only minor modifications. It
should also avoid parsing packet data, so that it can support
any protocol. Furthermore, the proxy should be able to sup-
port multiple clients, as well as multiple connection types
(e.g., multimedia, HTTP, ftp, etc.) simultaneously among
those clients. This is important because it is common for
multiple clients to share a single wireless access point. Cur-
rently, however, only single-client, proxy-based solutions
exist[4, 3, 14]. Multiple clients present additional chal-
lenges. An example (shown in [3]) is that data can arrive
at the access points for different clients at the same time—
because the wireless medium is shared between clients, an
energy-aware scheme must involve clients agreeing on a
global schedule. Finally, a scheduling policy must be de-
veloped that can adapt to both regular and bursty behavior.

Our implementation addresses these concerns. We have
designed a scheduling policy that bursts packets to clients; it
is implemented in a transparent proxy that resides between
clients and servers, which both believe connections to each
other are direct. Our proxy uses address spoofing for trans-
parency and separate connections to the client and server to
implement this abstraction efficiently. We allow any pro-
tocol to be used, and we support multiple clients as well
as different types of connections from those clients. The
number of clients supported is dependent only on the the
effective bandwidth of the network. All clients save energy



by receiving data in bursts from a wireless access point.
In this paper we investigate dynamic scheduling of mul-

tiple clients, using both UDP and TCP traffic. Our re-
sults show that energy savings within 10-15% of optimal
are common. For example, when multiple clients viewing
56kbps UDP streams are connected to the proxy, they save
over 75% energy compared to a naive client (one who keeps
its WNIC in high-power mode exclusively). This is within
15% of the theoretical optimal. In addition, with mixed
UDP and TCP traffic, clients downloading either or both
were able to achieve good energy savings. Furthermore,
this is usually done with few missed packets (typically less
than 2%) on the clients.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 describes the design and
implementation of our proxy as well as its scheduling pol-
icy, and Section 4 describes our experiments and discusses
the results. Finally, Section 5 summarizes the paper.

2 Related Work

The idea of a transparent proxy has been previously stud-
ied. These can be used to improve TCP throughput [13].
Another way they can be used is to partition the Internet
into distinct regions [8]. Also, connection splicing can be
used with a proxy, which can improve latency within the
proxy [16]. The primary difference with using a transpar-
ent proxy in our setting is that we must buffer packets in
the proxy. This means that a transparent proxy will increase
round-trip times from the point of view of both sender and
receiver, potentially decreasing the TCP window size and
hence increasing the transmission time. Our proxy handles
this problem by using transparent double connections along
with source address spoofing (see Section 3). Our imple-
mentation is similar in spirit to that of Indirect TCP [1] and
Snoop [2]. The former splits a TCP connection at the base
station and the latter modifies the link layer; both are in-
tended to optimize for wireless networks. The differences
between these two protocols and our transparent proxy are
that (1) they are optimizing for performance, whereas we
are scheduling for reduced WNIC energy, and (2) our proxy
handles both UDP and TCP traffic, as opposed to only TCP
traffic (which causes some implementation difficulties), and
(3) we are not modifying the access point or any other part
of TCP.

A body of closely related work to ours provides energy
savings for a single multimedia client. This has been done
by [14] as well as [4, 3]. The former includes transcoding,
conversion of a variable bit rate stream to a constant bit rate
stream, and client side prediction. The latter provides en-
ergy savings for a single multimedia client for Quicktime,
Real, and MS Media. However, while it effectively saves
energy for a single client, the scheduling policy developed
in that work caused high rates of collision and packet loss

for multiple clients. Our work is distinct in that it supports
multiple concurrent clients.

Our work uses a particular scheduling algorithm for both
UDP and TCP data. It schedules each client on the same
frequency, so all clients share the total bandwidth; this is
similar to TDMA [7]. Others have also worked on wireless
scheduling algorithms (e.g., [5]).

Other related approaches are to use the energy-saving
mechanisms defined by 802.11b. However, it is not a good
match for multimedia [4]. One improvement to 802.11b
is the Bounded Slowdown Protocol [9], which uses mini-
mal energy given a desired maximum increase in round trip
time. However, like 802.11b, this protocol is aimed at long
periods of inactivity followed by small amounts of data re-
ceived (e.g., web pages). Our work is focused on multime-
dia streams, which by their nature have packets arriving for
a long period of time. Finally, there has been work done on
reducing idle energy in the network interface [15].

3 Implementation

This section describes our implementation. Section 3.1
gives an overview, and Section 3.2 describes our schedul-
ing policy and its implementation, including address spoof-
ing to achieve transparency without unduly increasing the
transmission time. Section 3.3 describes delay compensa-
tion algorithms used on clients to adjust to routing delays in
the wireless access point.

3.1 Overview

Our implementation is within a proxy that is interposed
between servers and clients. It buffers data from the servers,
and transmits it at regular intervals as a burst to the appro-
priate client. This way, the access point will not have to
make scheduling decisions between clients, because only
one client will be receiving at a time. Clients can request
arbitrary types of data, though in our experiments we use
UDP and TCP.

We collect a trace of the wireless-side activity using a
packet sniffer running on a mobile computer known as the
monitoring station. This trace is read by a simulator post-
mortem in order to determine energy used per client. This is
compared to the total energy used by a naive client, which
keeps its WNIC in high-power mode for the duration of the
trace. The overall architecture is shown in Figure 1.

We assume that a wireless network interface card
(WNIC) can be in sleep, idle, receive, or transmit mode.
Sleep mode uses a very small amount of power, and dur-
ing this time no data can be received or transmitted. The
remaining modes use a relatively large amount of power,
with receive and transmit modes somewhat larger than that
used by idle mode [17, 6]. We therefore refer to sleep
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Figure 1. System architecture.

mode as low-power mode and all other modes as high-
power mode for the remainder of the paper. A client saves
energy by transitioning its WNIC between high- and low-
power modes according to our scheduling policy, which is
described next.

3.2 Scheduling Policy

This section describes the design and implementation of
our energy-conserving scheduling policy. We use a proxy
placed between the server and the wireless access point to
carry out this policy. Section 3.2.1 discusses the design of
our policy, and Section 3.2.2 details our implementation of
the policy.

3.2.1 Design

Our primary design goal is to transform ordinary data
streams into bursty streams, scheduling bursts so that each
client receives a fair share of the bandwidth. We implement
this policy through a transparent proxy, which is described
below. The scheduling policy (see Figure 2) works as fol-
lows. The proxy broadcasts a schedule message as a UDP
packet to all active clients at well-defined intervals. We de-
fine the scheduler rendezvous point (SRP) as a moment in
time at which the proxy agrees to send the schedule. The
schedule describes the length of each client’s data burst and
the order of the bursts, so that client � is assigned rendezvous
point ������� . At point ������� , client � transitions its WNIC
to high-power mode. At the same time, the proxy trans-
mits data from the packet queue for client � to that client
in a burst, marking the type-of-service bit in the IP header
of the last packet so that the client knows when to transi-
tion its WNIC back to low-power mode. The time period
between schedule broadcasts is known as a burst interval.
Each schedule is valid for exactly one burst interval, and
then a schedule for the next burst interval is sent at the next
SRP1. In the example in Figure 2, in fact, there is another
client that receives traffic during the second burst interval.

Schedules are determined immediately before being
broadcast. We allow the size of a schedule to be variable

1While the information sent to each client could be done individually at
the end of its burst, complete information is available after all clients have
received their data for a burst interval. This allows fairness between clients
as well as schedules with variable burst intervals (see Section 4).

or fixed. If schedules are of varying size, a new schedule is
determined by examining a snapshot of the packet queues
for all clients. The schedule is constructed such that each
client can empty its packet queue during the next burst in-
terval. The schedule will also contain the time at which the
following schedule will be broadcast. If the schedule is a
fixed size, however, the proxy gives each client a fraction
of the available burst interval proportional to the amount of
data in its packet queue. At present, we do not perform ad-
mission control at the proxy and so do not handle overload;
to solve this problem we could leverage off of the significant
amount of work in this area (e.g., [18]).

Our proxy is transparent, meaning that neither clients nor
servers are aware of its involvement in any data transfer. A
transparent proxy is desired for generality, as application
protocols such as RTSP, HTTP and ftp can be supported
without explicitly understanding the protocol semantics. To
initiate a connection, the client contacts the server, which
responds by opening a connection (as usual). After the con-
nection is established, the server will simply send data to
the client as normal. The client, on the other hand, sees
data being transmitted from the server in a bursty manner.
The client must also read the UDP broadcast packet from
the proxy, which contains its rendezvous point as well as
the arrival time of the next schedule. The client can turn
off its WNIC until its rendezvous point is reached, at which
point it transitions the WNIC to high-power mode. After
the client receives its burst, it transitions the WNIC back
to low-power mode until the next schedule packet is due.
The modifications to the client to allow this are straight-
forward and could be implemented with a simple daemon.
Note that the client may want to itself buffer multimedia
packets and locally deliver them to the multimedia player
at a regular pace. Such buffering introduces its own energy
requirements, which we are not modeling.

3.2.2 Implementation

The proxy is implemented using the Linux 2.4.18 bridging
mechanism [10]. We use the bridging code in the Linux
2.4.18 kernel, as well as the brctl utility, to do this. The
proxy uses IPQ, a packet filter built into iptables, to catch all
incoming or outgoing packets. The proxy is implemented
using multiple threads: an IPQ thread, which catches and
possibly modifies all incoming or outgoing packets; a burst-
ing thread, which bursts data to clients; and a queuing
thread, which moves packets between queues for the clients
and servers.

Because the proxy is transparent, the clients and servers
believe that they are connected to each other directly. How-
ever, as described above, to avoid a large increase in trans-
mission time, there must be separate connections between
(1) the client and the proxy and (2) the proxy and the server.

Figure 3 describes the steps taken when a client connects
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Figure 3. Picture of the steps taken on a TCP
connection from client (C) to server (S) with a
transparent proxy (P).

to the server. In step 1, the client sends an initiate request
(SYN packet) to the server. This request is caught by IPQ,
which creates a receiving socket (the “client-side” socket)
and changes the header of the message so that the request
is from the client to the proxy, then “re-injects” the packet
to be routed (step 2). The proxy responds to this by first ac-
knowledging the client (returning a SYN ACK packet) (step
3); this acknowledgement is caught by IPQ, which changes
the header to indicate it is from the server (step 4). The
proxy also creates a server-side socket and initiates a con-
nection to the server (step 5); IPQ catches the message and
changes the header to indicate that the message is from the
client (step 6). Finally, the server sends back an acknowl-
edgement to the the client (step 7), which IPQ changes
so that the destination is the proxy (step 8). Similar steps
are taken to handle the acknowledgement of the SYN ACK
packet, as well as transmission of packets from the server to
the client.

While the basic idea is given above, there are important
low-level details required for its implementation. These
include handling unexpected packet orderings, correctly
marking the last packet of a client’s burst, and handling
bandwidth limitations. We describe each of these in turn.

Packet Ordering The proxy transmits both UDP and
TCP data and sends out a new schedule after all clients have
received their data for the previous schedule. Because UDP
is unreliable, packets can arrive at the client in a different
order than they were sent from the proxy. Specifically, the
schedule message (which is UDP) for burst interval � can
actually arrive at a client when the client is (1) still receiving
data for burst interval ����� or (2) already receiving data
packets for burst interval � . In other words, in practice the
schedule can arrive slightly before or slightly after the next
burst. To handle (1), clients must ignore the new schedule
until they receive a marked packet that indicates the end of
the previous burst (or until another schedule is received, if
the marked packet is dropped). To handle (2), clients must
accept data that comes before a schedule.

Packet Marking Recall that a burst is terminated with a
marked packet. While this idea is simple in principle, in
practice it is somewhat more difficult for TCP packets. This
is because we mark these packets in the IPQ thread, but
we determine what data should be marked in the bursting
thread. We accomplish this by having the bursting thread
communicate via shared variables as to which is the last
byte in a burst. Specifically, there are three shared vari-
ables per client-side socket � : ��� , ��� , and 	
� . Variable ���
stores the number of bytes sent by the bursting thread, and
��� stores the number sent by the IPQ thread; the invariant is
�
��������� . Variable 	
� , which represents the byte number
to be marked, is initialized to ��� . When the bursting thread
sends the last packet in a burst, it copies ��� into 	
� . The
IPQ thread then marks a packet when ������	
� and resets
	�� to ��� . This scheme is further complicated by potential
retransmissions from the proxy to the client, which are han-
dled by the proxy by comparing sequence numbers. For this
case, ��� would not be incremented.

Bandwidth Constraints The schedule developed for a
burst interval contains a set of client IP addresses and their
associated transmission start and end times. However, the
proxy must be careful to accurately estimate the amount of
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data that can be sent to a client during its reception period.
The proxy can transmit data to the access point faster than
the access point can transmit to the client. If the proxy
sends data to a client (through the bursting thread) during
the whole period, some of that data may actually be for-
warded by the IPQ thread after the end of the interval, due
to the limited wireless network bandwidth. If this happens,
the data for that client may take longer to transmit than the
time allotted, meaning that subsequent clients will not re-
ceive their data as scheduled. This leads to wasted energy
on those clients. Furthermore, if the proxy sends too few
packets, bandwidth is wasted.

To address this problem, we executed a set of micro-
benchmarks to create a model of send overhead and latency
on our wireless network. From these, we developed a linear
cost function based on the message size. The proxy uses
this to estimate how much data can be sent in a given time
period.

Proxy memory requirements In our experiments, the
memory buffer required on the proxy is not large. The proxy
requires the maximum space when the entire wireless band-
width is in use. With an effective bandwidth of 4Mbps, this
means that even if one second of data (to all clients) had to
be buffered, 512KB would be sufficient.

3.3 Delay Compensation Algorithms

A client’s WNIC must be transitioned to high-power
mode to receive the schedule and then again to receive its
burst. If the client transitions early, some energy will be
wasted while waiting for the packets to arrive; if the client
transitions late, packets will be missed. The goal is to mini-
mize the wasted energy, while avoiding missing packets. If
the client could perfectly predict when a packet would ar-
rive based on the information in the schedule, this would
not be a problem. However, while the proxy usually sends
the schedule as well as data bursts with better than millisec-
ond accuracy, delay may at times be observed by the client.
Even though the proxy is as close to the client as possible,
all packets must pass through the access point. This, as well
as the multithreaded nature of the proxy, can cause a packet
to arrive earlier or later than expected. Another possibil-
ity is that the clocks on the proxy and a client may not be
perfectly synchronized. For this reason, we use an adaptive
delay compensation algorithm on each client to determine
when to transition the WNIC out of low-power mode.

The intuition behind it is as follows. If a schedule packet
arrives earlier or later than expected, it is likely a change
in access point delay between the proxy and the client, and
several subsequent schedule packets will arrive according to
the same pattern. Adaptive delay compensation algorithms
therefore set each transition point a fixed amount after the
arrival time of the previous schedule. In order to reduce

missed packets, the amount is slightly less than a burst inter-
val; we refer to the difference as the early transition amount.
While this synchronization strategy is simple, we found it to
be effective in practice.

4 Performance

This section describes our experiments and presents our
results. Section 4.1 describes the experimental setup. Sec-
tion 4.2 describes the experiments performed and gives the
results. Finally, Section 4.3 analyzes the results.

4.1 Experimental Setup

In each experiment, clients either (1) requested a video
in Real format or (2) downloaded either HTTP or ftp. The
results obtained from the Real format video should apply
to any streaming data (e.g. Quicktime, MS Media); while
there are some differences in the streaming patterns, all
streaming data should be handled similarly. The monitor-
ing station and clients were various laptops using 11Mbps
Orinoco PCMCIA WNICs. The monitoring station ran
tcpdump to capture data about each packet on the wire-
less network. We ran RealServer 8.01 as our video server,
and each client laptop ran RealOne 2.0. The multimedia
server, web server, and access point were connected over
100Mbps Fast Ethernet. The multimedia clients requested
a 1:59s trailer for the movie The Wall, encoded by Adobe
Premier 6.0 at 56kbps, 128kbps, 256kbps, or 512kbps. Be-
cause the encoder could not perfectly match the requested
bitrates, the effective bitrates of these streams are 34kbps,
80kbps, 225kbps, and 450kbps respectively. For video ex-
periments, requests were spaced roughly one second apart
in order to spread traffic; transmitting identical multimedia
streams simultaneously could cause large spikes of activity
during high bitrate periods. The streams were unicast to the
clients, so that the total bandwidth used was roughly equal
to the sum of the individual streams (i.e., no streams were
multicast).

We used a simulator to read the tcpdump trace post-
mortem, calculating (1) how much time a client’s WNIC has
spent in high- and low-power mode, (2) how many bytes its
WNIC has transmitted and received, (3) how many packets
are lost (UDP) or packets dropped (TCP) for each client,
and (4) how much energy the client would use by tran-
sitioning its WNIC between modes according to a given
delay compensation algorithm. This is compared to the
naive client, which keeps its WNIC in high-power mode.
The card simulated is 2.4Ghz WaveLAN DSSS, which uses
1319 mJ/s when idle, 1425 mJ/s when receiving, 1675
mJ/s when transmitting, and 177mJ/s when sleeping [17, 6].
Also, we model the energy cost of transitioning the WNIC
from sleep to idle mode as 2 ms in idle time [9].
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Figure 4. Results with ten clients viewing UDP (video) streams with 100ms, 500ms, and variable burst
intervals. Average, minimum, and maximum energy usage for the clients are represented by the bar
and error lines, respectively. The first three bars (56K, 256K, 512K) show the experiments where each
client viewed an identical stream, while the last two bars represent cases where the clients viewed
streams of different fidelity.

4.2 Experiments

We performed three different sets of experiments. The
first set investigated a scenario where all clients view video
streams. This shows how well our system generalizes from
prior work done with a single video client [3, 14]. Next, we
performed experiments with all clients downloading HTTP
data. This is a more realistic scenario, as web access is the
most common activity on wireless devices. Third, we per-
formed experiments where a subset of the clients view video
streams and the rest download TCP data (either HTTP or
ftp). These experiments are intended to investigate poten-
tial interactions between the two types of data.

For each type of experiment, we tested three burst inter-
val sizes: fixed burst intervals of 100ms and 500ms as well
as a variable burst interval. This is intended to determine
the tradeoffs involved in scheduling. We discuss the results
of our experiments below. In Section 4.3 we analyze the
results.

Multiple video clients The first set of experiments in-
volved each client receiving only a video stream. Figure 4
shows the average, minimum, and maximum energy us-
age for each experiment (represented by the bar and error
lines, respectively). There were five types of client access
patterns. The first three involved each client viewing an
identical bitrate stream; we tried 56Kbps, 256Kbps, and
512Kbps. The results show that the average energy saved is
77% for the 56Kbps streams, 66% for the 256Kbps streams,
and 53% for the 512Kbps streams.

The fourth type involved five clients viewing a 56Kbps
stream and the other five viewing a 512Kbps stream. The
final type involved five clients viewing a 56Kbps stream

and the remaining five clients viewing different fidelities
ranging at 56Kbps, 128Kbps, 256Kbps, and 512Kbps. The
dynamic nature of our scheduler allows the energy savings
to average about 69% in both experiments. As expected,
lower fidelity streams save more energy because they use
less bandwidth, giving them more opportunity to transition
the WNIC to sleep mode.

Multiple TCP clients The next set of experiments in-
volves each client browsing the web, which generates mul-
tiple concurrent TCP streams per client. For each experi-
ment, we used a script (which was generated prior to the ex-
periments) to ensure that the traffic pattern remained iden-
tical across different experiments. We used burst intervals
of 100ms and 500ms as well as a variable interval. Due
to space limitations a graph is not shown, but the results
showed that as with the video experiments, the clients save
significant amounts of energy compared to a naive client
(between 70 and 80%).

Video and TCP traffic We next examined our system
when handling a combination of video and TCP traffic.
Four experiments were run; each one has seven clients
viewing video and three clients browsing the web. Figure 5
shows the results of our tests. The first three bars show
all video clients viewing a specific quality stream, 56Kbps,
256Kbps, and 512Kbps respectively. The fourth test (la-
beled All/TCP) had the video clients view a variety of fi-
delities. The energy savings varies from just over 50% to
just under 90%. One interesting point is that the best-case
energy savings among the video clients is similar among
different fidelities. This is discussed further in Section 4.3.
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Figure 5. Results with ten clients with some viewing UDP (video) streams and others downloading
TCP (HTTP) data with 100ms, 500ms, and variable burst intervals. The left bar is for the UDP clients
and the right one for TCP clients.

4.3 Analysis of Results

This section analyzes the results. We first compare our
results to the theoretical optimal. Next, we discuss packet
loss. We then compare our results to those that could be
obtained using a static schedule. Finally, we discuss the
worst-case client.

Comparison to optimal One important metric to con-
sider is how close the energy saving for a client is to the
theoretical optimal. The optimal energy saved for a stream
can be computed by the formula:

������� �
�	��

�

�

��������	� � � ��
���� ��� ��	�����

� �
���

��� �
Here,

��

is the time to receive the entire stream if it were

sent all at once, �



is the energy cost per second to receive,� �
is the time for the download using the proxy, ��� is the

energy cost per second to sleep,
���

is the time for the down-
load without the proxy, � � is the energy cost per second in
idle mode, and ��� is the energy cost per byte. This is based
on the idea that optimally, the WNIC is in high-power mode
only to receive the data and in sleep mode at all other times,
while a naive client is idle when not receiving data. Us-
ing this formula, the optimal energy saved for the 56Kbps,
256Kbps, and 512Kbps streams from the video-only experi-
ments is 90%, 83%, and 77% respectively, compared to our
results (from Section 4.2) of 77%, 66%, and 53% for the
same streams.

In the mixed video/web experiments, generally, the me-
dian client energy savings is within 15% of optimal. How-
ever, there are some outlying cases; for example, with
512Kbps video files, the best case client saves over 80%
of the WNIC energy compared to a naive client. As stated
above, the optimal energy savings is 77% for a 512Kbps

stream. The reason for this anomaly is that the peak band-
width required to transfer 10 512Kbps streams exceeds the
effective wireless network bandwidth. This causes Re-
alServer to believe that the connection is lossy, and the
stream is adapted to a lower-quality, lower-bandwidth one.
This is a problem inherent to exceeding bandwidth limita-
tions rather than a problem introduced by the proxy. The
TCP clients have a lower variance in energy savings, which
is because adaptation does not occur.

The reason the 100ms burst interval performs worse than
the 500ms burst interval in all experiments is because the
WNIC is transitioned five times more often. As there is
an early transition amount (see Section 3.3) each time the
WNIC is transitioned to high-power mode (to avoid miss-
ing packets), this penalty is significant. For example, in our
experiments, we used 6ms as the early transition amount
for the 100ms experiments. In general, our experiments
showed a factor of four increase in this penalty, on aver-
age from 3 seconds to 11 seconds of time the WNIC must
be in high-power mode, between using a 500ms and 100ms
burst interval. To investigate this further, we tried different
early transition amounts for a 100ms burst interval, transi-
tioning 0, 2, 4, 6, 8, and 10ms early. The ideal value is
the one that minimizes wasted energy due to transitioning
the WNIC early while avoiding missed packets. The latter
degrades performance in two ways: first, it makes video
stream quality poor and causes TCP data retransmission,
and second, if a schedule is missed, a client must keep the
WNIC in high-power mode until the next schedule arrives.
Figure 6 shows the amount of wasted energy on a single
client caused by early transitioning of the WNIC. As the
early transition amount decreases, the overhead for transi-
tioning to high-power mode early decreases, but the number
of missed schedules increases. In this case, 6ms is the best
value to choose. The other dimension is missed packets;
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Figure 6. The effect of different early transi-
tion amounts on wasted energy.

this ranged from 0.97% (10ms early) to 1.83% (0ms early).
Variable burst intervals appear to have energy savings in be-
tween the 100ms and 500ms interval. This is because the
minimum burst interval is 100ms, and the maximum is less
than 500ms unless several streams have high bandwidth.

Packets lost or dropped Packets lost (UDP) or packets
dropped (TCP) are usually less than 2% with a few outliers,
indicating that generally, the data is sent according to the
schedule issued by the proxy.

It is difficult to analyze the effect on UDP streams of
dropping up to 5% of the packets. Obviously, in the case of
a video, the video will appear worse to the user. However,
while we believe that missing a few packets is acceptable,
this is fundamentally an human perception issue. We leave
this to researchers in that area.

On the other hand, dropping TCP packets in reality
causes retransmissions. In our tests, we actually receive
packets that would be dropped and compute what would
be dropped postmortem. (This is primarily because most
of our clients are running Windows, where we do not know
how to drop packets when necessary.) To estimate the ef-
fect of drops, we ran separate experiments with one client
and Netfilter [11], which we configured so that if the client
was in sleep mode, packets are actually dropped. We found
that the effect of dropping packets was small (no more than
a 10% increase in transmission time, which would have the
corresponding effect of an expected increase in in energy
consumed of no more than 5%2). We repeated an experi-
ment using DummyNet [12], configuring a 4Mb/s network
with a 2ms round-trip time and 5% drop rate. Similar results
were observed. Essentially, the low round-trip time between
proxy and client means that dropping packets is not severe.

2The extra energy is consumed because the transmission time is longer;
however, most of the extra time would be time the WNIC is in sleep mode.

Comparison to static schedules For the subset of exper-
iments above where all clients view streams of equal fi-
delity, a static schedule (rather than our dynamic one) can be
used. In other words, the proxy can simply broadcast a sin-
gle (permanent) burst interval for each client. This should
save energy compared to our dynamic approach in that there
is no early transition necessary to receive the schedule. If
all clients are receiving approximately the same amount of
data, it is also sufficient (i.e. no bandwidth is wasted by
assigning a client a fixed-size amount of time for receiv-
ing) because on average, each client is receiving data at
approximately the same rate. Hence, we implemented a
static schedule for comparison, using a 100ms burst interval
and ten clients viewing (identical) video streams of 56Kbps,
256Kbps, and 512Kbps. We found that both average energy
usage and variance is lowered by using a static schedule.

However, a static schedule is insufficient in the case that
the fidelity of the videos vary per client or TCP traffic is
involved. An example is shown in more detail in Figure 7,
which contains the results from using fixed-sized slots for
both TCP and UDP data. During TCP slots, all TCP data is
sent to the appropriate clients, and during UDP slots, UDP
data is sent. However, the burst interval was 500ms, and
the TCP and UDP slots were varied so that for each traf-
fic pattern (light, medium, and heavy), we ran experiments
where the TCP slot size was larger than, smaller than, and
roughly equal to the size necessary to support the TCP traf-
fic. (We show only the medium traffic pattern.) In these ex-
periments, during the TCP slot, all clients must have their
WNIC in high-power mode, so that the latency increase is
restrained. It is not possible to simply minimize the TCP
slot size, as TCP data will not be able to travel through the
proxy: as the slot size decreases, the end-to-end latency of
background traffic increases. The larger the slot size, the
more energy that is wasted. For example, while the energy
use for the UDP clients is lowest with a small TCP slot, the
added latency of the TCP stream is significant.

Instead, our dynamic schedule handles this seamlessly;
recall from Figure 4 the following experiments: (1) five
clients viewing a 56Kbps stream and the other five view-
ing a 512Kbps stream, and (2) different clients viewing
different fidelities ranging at 56Kbps, 128k, 256Kbps, and
512Kbps. The dynamic nature of our scheduler allows the
energy savings to average about 69% in both experiments.

Worst-case client In the case of the worst-performing
client (as shown by the error bars in Figure 4), examina-
tion of the traces shows that missed schedules are the pri-
mary cause. In particular, this client generally happens to
miss the broadcast and at the same time misses its data.
This means that it does not receive a marked packet (and
the WNIC remains in high-power mode); on the other hand,
other clients that miss the broadcast may receive some or all
of their burst and then transition the WNIC to sleep mode.
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Figure 7. On the left, the average, minimum, and maximum energy usage for ten multimedia clients
with TCP traffic on the network, using a static schedule. On the right, the TCP client is analyzed;
both energy usage (bars, left y-axis) and transmission latency (dots, right y-axis).

5 Summary and Future Work

This paper has described a novel scheme to save energy
for multiple mobile clients. We have designed a schedul-
ing policy, capable of adapting to steady and bursty traffic.
Our policy is implemented in a transparent proxy that bursts
packets to clients. This allows clients to transition to low-
power mode between bursts, saving energy. Our proxy uses
address spoofing for transparency, which allows clients and
servers to appear to communicate directly. It also main-
tains separate transparent TCP connections to the client and
server in order to reduce transmission times

Results showed that energy savings within 10-15% of
optimal were common with a low missed packet rate—
typically less than 2%. For low-bandwidth streams, clients
saved over 75% energy compared to a naive client. Our
proxy was able to support multiple concurrent clients down-
loading both UDP and TCP data.

One avenue for future research is reducing the energy
wasted by requiring the client to transition to high-power
mode at both the schedule and burst rendezvous points. If
the schedule does not change from one burst interval to the
next, the proxy may inform the client that it will use the
same schedule again for the next burst interval. The client
can then transition to high-power mode only at its burst ren-
dezvous point, avoiding the energy cost of receiving the
schedule from the proxy.
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