
On the need for query-centric unstructured
peer-to-peer overlays

William Acosta and Surendar Chandra
University of Notre Dame, Notre Dame, IN 46556, USA

{wacosta,surendar}@nd.edu

Abstract—Hybrid P2P systems rely on the assumption that
sufficient objects exist nearby in order to make the unstructured
search component efficient. This availability depends on the
object annotations as well as on the terms in the queries. Earlier
work assumed that the object annotations and query terms follow
Zipf-like long-tail distribution. We show that the queries in real
systems exhibit more complex temporal behavior. To support our
position, first we analyzed the names and annotations of objects
that were stored in two popular P2P sharing systems; Gnutella
and Apple iTunes. We showed that the names and annotations
exhibited a Zipf like long tail distribution. The long tail meant
that over 98% of the objects were insufficiently replicated (less
than 0.1% of the peers). We also analyzed a query trace of
the Gnutella network and identified the popularity distribution
of the terms used in the queries. We showed that the set of
popular query terms remained stable over time and exhibited
a similarity of over 90%. We also showed that despite the Zipf
popularity distributions of both query terms and file annotation
terms, there was little similarity over time (< 20%) between
popular file annotation terms and popular file terms. Prior
P2P search performance analysis did not take this mismatch
between the query terms and object annotations into account and
thus overestimated the system performance. There is a need to
develop unstructured P2P systems that are aware of the temporal
mismatch of the object and query popularity distributions.

I. INTRODUCTION

A vast body of prior work had investigated various aspects
of building and maintaining overlays for managing the stored
objects in P2P systems. Structured overlays such as Pastry [1]
and Tapestry [2] used a distributed hash table data structure to
route queries. Unstructured P2P systems such as Gnutella [3]
maintained a distributed overlay for routing requests while us-
ing flooding or random walks [4] to locate objects. Hybrid P2P
systems [5] used a localized unstructured search before using
a global structured lookup to improve the search performance.

Structured P2P systems required an exact object name
match in the query string. Unstructured P2P systems used
term matching for their queries; the system searched for all
objects that matched the set of terms in the query string.
The performance of these systems critically depended on the
naming and annotation mechanisms that described the objects.
However, peers were independent entities. Peers annotated and
described objects independently from other peers who queried
and requested these objects. It is important to understand
how peers actually named and annotated objects as well as
how those annotations relate to the queries used to locate the
objects.

Many prior P2P systems had made no special assumptions
on how the shared objects were actually annotated or how
users queried for those objects. Recently, some work observed
a Zipf like long tail distribution [6], [7] of object annotation
and the query terms. To confirm these observations, first we
experimentally analyzed object annotations in two popular
systems: Gnutella and iTunes sharing systems. Gnutella named
objects using a single name while iTunes used a richer set of
annotations. iTunes also used the Gracenote (www.gracenote.
com) service to obtain meta-data used to describe objects.
Since many P2P systems had been deployed and popular for
a number of years, we expected that the naming mechanisms
would have converged to a state wherein clients can reasonably
expect to search and find the contents of interest. We based our
analysis on the object names and annotations alone; we were
not concerned with analyzing the semantic equivalence. Note
that much of the P2P shared contents were multimedia objects
[7]; efforts to analyze the media contents (similar to one used
by Pucha et al. [8]) in order to recognize whether two objects
were identical will likely fail because the same object could
have been transcoded to various formats with imperceptible
differences. For example, transcoding a .wma file to .mp3
would appear different at the byte level.

Our analysis showed that the annotations exhibited a Zipf
like behavior for analyzing the system in terms of names,
as well as annotations such as artist, album and genre. Over
98% of the objects were replicated in less than 0.1% nodes.
Next, we analyzed queries from a one week trace from the
Gnutella network and tracked the popularity of query terms
during this time. We show that the set of popular query
terms remained stable over time. However, there was little
similarity (< 20%) between popular query terms and popular
file annotation terms during each evaluation interval. This
suggests that there was a temporal mismatch between terms
that were popular among file names and the terms that were
popular among the queries generated by the user. We show that
prior work had overestimated the ability for unstructured P2P
systems to locate popular content. We also showed that hybrid
P2P systems will likely perform worse than the corresponding
structured P2P systems because of the initial failure of the
unstructured search component. Our position in this paper
was that P2P systems must consider the temporal relationship
between queries and files to support efficient searches. The
design of such P2P systems is the subject of our ongoing
research. In [9], we present preliminary results of a system

that can exploit the temporal patterns in query term popularity
to build adaptive synopses of contents for each peer.

The rest of the paper is organized as follows. Section II
describes our experiment setup. We describe our analysis of
Gnutella and iTunes object annotations in Section III. We then
present our analysis on the relationship between query terms
and file annotation terms in Section IV. Section V describes
the implications of our findings. Section VI places our work
in the context of prior research. We conclude with a general
discussion in Section VII.

II. SYSTEM ARCHITECTURE

Our experiments were designed to analyze the object anno-
tations and their relationship to the query workload. First we
analyzed the object annotations in Gnutella and Apple iTunes.
We also analyzed the user queries in the Gnutella network.

A. Collecting Gnutella object annotations and queries

We developed a file crawler similar to Cruiser [10] that
crawled the Gnutella network and queried each peer for a list
of shared objects. The crawler first performed a topology crawl
to discover peers connected to the Gnutella network. It then
performed a file crawl by connecting to each discovered peer
and requesting a list of its shared files. All file names were
transmitted from other peers using UTF-8. UTF-8 allowed
strings containing both single byte as well as multi-byte
character sets. We performed a crawl in October 2006 and
discovered 18.6 million objects (7.2 million unique objects)
on 41,910 peers. Our crawl in April 2007 discovered over 21
million objects (8.1 million unique objects) shared by 37,572
peers. Gnutella described objects using a single name. Users
were free to impose their own structure on this name.

To collect our query trace, we modified the source code of
Phex [11], an open source Gnutella client to capture queries on
the network. The client connected to the network and logged
every incoming and outgoing query that passed through it. We
ran the query capturing client for one week in April 2007 and
captured over 2.5M queries.

B. Collecting iTunes object annotations

Apple iTunes allowed users to selectively share (using
playlists) their song collection with other iTunes clients; this
sharing was turned OFF by default. Once the sharing was
turned ON, the default behavior was for the clients to share
all their local objects. Recent versions of iTunes restricted the
sharing to be within the same sub-network. Also, iTunes only
allowed sharing objects with five distinct IP addresses within
a 24 hour period (even for contents such as podcasts that may
allow unrestricted distribution). Users can password protect
their shares in order to avoid this five user limitation. Songs
purchased from the iTunes store may be protected by Apple
Fairplay DRM. The DRM-protected songs cannot be publicly
consumed, though the they can be shared. To play these songs,
a computer had to be explicitly authorized. iTunes allows users
to manage PDF, audio and video objects, though PDF objects

cannot be shared with other clients. We collected information
about these shared-protected contents in our experiments.

Apple iTunes allowed for a richer annotation with categories
such as Genre, Artist and Album. Songs that were purchased
from the Apple store embedded these annotations while songs
ripped by the user were automatically annotated by the iTunes
client using the Gracenote service. End users were allowed to
change these annotations.

We modified AppleRecords [12] to connect to iTunes clients
and log the songs that were shared by the user. We encountered
620 unique iTunes shares within the University. Of these, 145
shares were password protected, 313 shares returned a busy
error code and 111 shares were being blocked by network
firewalls. Clients were likely busy because the tracing program
violated the 5 unique IPs addresses per 24 hour restriction.
We successfully collected the object share information from
239 unique users (significantly smaller than the observed
number of peers in Gnutella networks). These users shared
533,768 objects of which 171,068 objects were unique. For
each of the shared objects, we logged the following attributes:
track id (set by the particular iTunes client), track name,
album name, artist name, track number, genre, (the system
did not enforce the genres; the users were allowed to create
their own genres easily), user song rating, object format (e.g.
MP3, AAC audio, MPEG-4 audio book), length of object (in
milliseconds), sample rate (e.g. 44100 Hz), song bitrate (in
kbps), object size (in bytes), BPM, disk count, disk number,
song description, comments, date song was added and the date
that the song was last modified. We conducted the experiment
during late April/early May in 2006. Since Apple restricts
sharing within the same sub-network, our collection agent had
to be run within the sub-network. Notre Dame partitions its
local network in a number of different VLANs. We monitored
one of these dormitory VLANs as well as several wired and
wireless VLANs within the campus. During this duration, the
entire campus wireless LAN infrastructure was configured to
route all Zeroconf service discovery packets to the monitoring
station. This allowed us the flexibility of not installing a
monitoring station inside each of the campus WLANs. We also
collected some traces from another school (which wished to
remain anonymous). We did not notice any significant content
differences between the users from various networks of the
two schools.

III. ANALYZING SHARED OBJECT ANNOTATIONS

Next, we describe the results of our analysis of the shared
contents that were available in Gnutella and iTunes. Gnutella
objects represent P2P systems that used a single name to
represent an object. On the other hand, iTunes described
objects using a richer set of annotations. Our analysis was
agnostic to any particular overlay topology.

A. Object annotations in Gnutella

We describe our analysis of object names that were captured
during April 2007. We observed similar results for our October
2006 data set. The trace consisted of over 21 million objects

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

N
u

m
b

e
r

o
f

G
n

u
te

lla
 c

lie
n

ts
 w

it
h

 o
b

je
c
t

Object

Fig. 1. Number of Gnutella clients with object (April, 2007)

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

N
u

m
b

e
r

o
f

G
n

u
te

lla
 c

lie
n

ts
 w

it
h

 o
b

je
c
t

(s
a

n
it
iz

e
d

 f
ile

n
a

m
e

s
)

Object

Fig. 2. Number of Gnutella clients with object. Object names were sanitized
by removing capitalization and special characters (e.g., dashes) (April, 2007)

(8.1 million unique objects) that were shared by 37,572 peers.
For each object in the trace, we plotted the number of replicas
in Figure 1. For this analysis, replicas were defined as files
with identical names. We also sanitized the file names by
removing capitalization and special characters such as dashes
and plotted the file name popularity in Figure 2. In the case
of sanitized filenames, replicas were defined to be files with
identical names after the sanitation process. From Figure 1, we
note that about 5.7 million of the 8.1 million unique objects
were available in a single peer; about 70.5% of the objects
were not replicated in any of the 37,572 peers. About 99.5%
of the objects were replicated in less than 0.1% (37) of the
peers. Similarly, from Figure 2, we noted that sanitizing the
names decreased the number of unique objects to about 7.9
million, 5.5 million of which were available in a single peer;
about 69.8% of the objects were not replicated. About 99.4%
of the objects were replicated in less than 0.1% (37) of the
peers.

We manually browsed these object names and sometimes

recognized objects that appeared to be the same and yet
appeared different in our similarity analysis. For example,
object names of ’Aaron Neville and Linda Ronstad - I Don’t
Know Much.mp3’, ’Aaron Neville and linda ronstandt- I Don’t
Know Much.MP3’, ’Aaron Neville - Don’t Know Much.mp3’,
’Aaron Neville ft. Linda Ronstadt - I Don’t Know Much.mp3’
and ’Aaron Neville- I Don’t Know Much (But I Know I Love
You).MP3’ appeared to refer to the same object. Non-specific
object names such as ’01 Track 1.wma’ appeared in 2,618
peers but was unlikely to be a replica of the same object.
Perhaps we require sophisticated spelling correction operations
[13] to identify similar names. However, this approach is made
harder because terms used in song names and user queries need
not follow from standard dictionaries.

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

N
u

m
b

e
r

o
f

G
n

u
te

ll
a

 c
li
e

n
ts

 w
it
h

 t
e

rm

Term

Fig. 3. Number of Gnutella clients with term(April, 2007)

Next, we split the terms in the Gnutella object names (using
the Gnutella protocol tokenization mechanism) and plotted the
cumulative distribution of the number of peers that contain
each term of the name in Figure 3. From the graph, we noted
that there were about 1.22 million unique terms. About 0.87
million terms (71.3%) were available in just one peer while
1.20 million terms (98.3%) were available in 37 or fewer nodes
(less than 0.1% replication [14]). Both the entire filename and
the individual terms (annotations) followed a Zipf distribution.
This suggested that many objects and many terms were rare
and thus making unstructured searches for them difficult.

B. Object annotations in iTunes

iTunes allowed the users to specify annotations such as song
name, genre, artist, album etc. Next, we analyzed these object
annotations. Our traces included 533,768 objects of which
171,068 objects were unique. These data traces were also used
in an earlier paper [15].

We analyzed the popularity distribution of the song names
in Figure 4(a). Of the 152,850 unique songs analyzed, 97,943
songs (64%) were available in just a single client. Similar to
Gnutella networks, non-specific song names such as TRACK
< number > and INTRO appeared more than once in several

 1

 10

 100

 1 10 100 1000 10000 100000 1e+06

Nu
m

be
r o

f i
Tu

ne
s

cli
en

ts
 w

ith
 s

on
g

(lo
gs

ca
le

)

Song (logscale)

(a) iTunes clients with song name

 1

 10

 100

 1 10 100 1000 10000

Nu
m

be
r o

f i
Tu

ne
s

cli
en

ts
 w

ith
 g

en
re

 (l
og

sc
al

e)

Genre (logscale)

(b) iTunes clients with genre

 1

 10

 100

 1 10 100 1000 10000 100000

Nu
m

be
r o

f i
Tu

ne
s

cli
en

ts
 w

ith
 a

lb
um

 (l
og

sc
al

e)

Album (logscale)

(c) iTunes clients with album

 1

 10

 100

 1 10 100 1000 10000 100000

Nu
m

be
r o

f i
Tu

ne
s

cli
en

ts
 w

ith
 a

rti
st

Artist (logscale)

(d) iTunes clients with artist

Fig. 4. Analyzing annotations in iTunes

clients. Next we analyzed the distribution of the song genre
(Figure 4(b)). iTunes was shipped with 24 genres. Users were
free to change the genre name. Figure 4(b) showed about
1,452 genres. 99,987 songs (18.7%) did not have any genre.
817 genres (about 56%) occurred in a single peer. Next we
analyzed the distribution of album names (Figure 4(c)). Album
names were decided by the artist. Album names for songs
purchased from iTunes store or ripped in the client will have
these values from Gracenote. We observed 32,353 unique
albums. 43,540 (about 8.1%) songs did not have an album
name. About 21,250 (65.7%) were not replicated in any other
peers. Finally, we analyzed the songs based on their artists
(Figure 4(d)). Note that a song can be performed by many
artists. Our traces showed songs from 25,309 unique artists.
16,500 artists (65%) of the artists appeared in a single peer.
All of these annotations appeared to follow a Zipf distribution.

IV. UNDERSTANDING THE PROPERTIES OF SEARCH
TERMS AND FILE ANNOTATIONS

In the previous sections we showed that the the Zipf
properties of the file annotations spans both different systems
(Gnutella and iTunes) as well as different features of the
annotations (e.g., genre, artist, album). In this section, we
examined the characteristics of a real-world query workload
as they relate to the file annotations.

An important assumption about unstructured P2P systems is
that they can locate popular content easily. However, there is
little overall correlation between the relative popularity of the
query terms and the terms used in the file annotations [6]. This
suggests that query performance in unstructured P2P systems
is limited by the ability of the system to match popular query
terms to file term annotations.

We were interested in determining how the relative popular-
ity of query terms and file annotation terms varied over time.
However, evaluating the change over time is complex. First,
identifying which terms are popular requires a consistent def-

inition of popularity. Relying only on raw occurrence counts
overlooked ”hot” terms that become popular but whose raw
occurrence counts may have been low over the long term. Due
to this effect, we considered both raw popular and temporarily
terms terms. This had a cascading effect on our examination of
the relationship between popular query terms and popular file
terms. We had to therefore examine the relationship between
popular query and file terms with respect to the time-varying
nature of popular query terms.

In the following sections we examine how the popularity of
query terms changes over time. We then examine the similarity
between popular query terms and file annotation terms over
time.

A. Identifying Popular Query Terms

In this section, we were interested in determining the
stability of popular query terms over time. We consider two
types of popular terms. First, persistently popular terms are
those terms that remained popular over the long term duration
of our analysis. Second, transiently popular terms were those
terms that exhibited significant deviation from their historical
popularity for a given time interval. We were interested in
identifying both classes of popular terms.

First, we examined the set of transiently popular terms.
To identify these transiently popular terms, we first analyzed
the occurrence of each terms using a training set of queries
(10%) of the total queries. We then evaluated the popularity
of each term at various evaluation intervals and compared the
number of occurrences for each term during that interval to
their historical number of occurrences. Terms that deviated
significantly from their historical average were considered to
be transiently popular for the evaluation interval.

Figure 5 plots the number of transiently popular terms
over time for different evaluation intervals. Our experiments
showed that although the mean number of transiently popular
terms was low (< 10), there was significant variance in the
number of of these transiently popular terms over the range
of our evaluation intervals. We make two observations from
these results. First, a large variance in transiently popular terms
requires that the relationship between popular query terms and
popular file terms take into account the time-varying nature of
popular query terms. Second, the bulk of popular terms appear
to be persistently popular as there are few transiently popular
terms during each evaluation interval. We next examined the
stability of the popular query terms over time.

B. Stability of the Set of Popular Query Terms

A set of popular query terms that varied little over time
allowed for more opportunities for the P2P system to resolve
the popular queries. We used the Jaccard index to analyze
the similarity of the set of popular query terms over time.
The Jaccard index provides a means to compare the similarity
between two sets of objects. The values range between 0
(entirely dissimilar) and 1 (identical). Given two sets A and
B, the Jaccard index of A and B is the ratio of the size of the

intersection of A and B to the size of the union of A and B:

Jaccard(A,B) =
|A ∩B|
|A ∪B|

During a given time interval t, Qt is the set of query terms
observed during the interval and Q′

t is the set of popular query
terms for the interval. We then define Q′′

t = Q′
t∩Q′

t−1, the set
of persistently popular query terms at time interval t, as the
set of popular query terms for time interval t that were also
popular during the previous interval (t − 1). We computed
Jaccard(Q′

t, Q
′
t−1) at each evaluation interval.

Figure 6 plots the Jaccard similarity between the popular
query terms for an interval and the terms that were popular in
the prior interval. The analysis was performed on a one week
query trace using a 60 minute evaluation interval. Although
we only present results for 60 minute evaluation intervals,
we witnessed consistent results across the different evaluation
intervals. In Figure 6, we see that after a short stabilization
time1, the set of popular terms remains relatively constant
as exhibited by the high Jaccard similarity value (> 90%).
This suggested a stable set of popular query terms that can
potentially allow for more opportunities to resolve popular
queries.

C. The Disconnect Between Query Terms and File Terms

In this section, we were interested in determining whether
the shared file terms correspond well to the set of observed
query terms. From our query trace and crawl data we identified
the set of popular file terms (F) and the set of popular query
terms for a given evaluation interval (Qt). Using the Jaccard
index (Jaccard(F,Qt)), we observed only a 5% similarity
between the query terms for the interval and the terms of all
shared objects.

Figure 7 plots the Jaccard similarity over time between the
set of query terms for the given interval and the set of popular
file terms. We see that the similarity between query terms and
file terms remained low (< 20%) for all evaluation interval
values. These results suggested that there was a disconnect
between the file terms and query terms; the terms used to
describe the objects were not the same as the terms that
users specified in the queries to locate the shared objects.
This disconnect is important because it suggests that despite
having a stable population of query terms over time, there
was little opportunity for queries with popular terms to be
resolved against files in the system. In the following section
we discuss some implications of our findings with respect to
query performance.

V. IMPLICATIONS OF THESE OBSERVATIONS

The trend in both unstructured and hybrid P2P networks was
toward lower TTL values. Hybrid P2P systems preferred lower
TTL values in order to rapidly identify rare queries (which
can be queried using a structured overlay). Unstructured P2P

1Because this analysis compared data from one interval to data from the
previous interval, the first few intervals exhibited significant variance as the
overall popularity counts for many terms had yet to be established.

Fig. 5. Number of transiently popular query terms vs. time for different evaluation intervals. The overall mean was low, but there was significant variance
across evaluation intervals.

Fig. 6. Jaccard similarity over time for the set of popular terms (Q′
t) vs. the set of previously popular query terms (Q′

t−1). Analysis performed on a one
week query trace with the evaluation interval set to 60 minutes.

systems preferred lower TTL values in order to restrict the
reach of queries into the network. In 2006, the mean number
of hops taken for Gnutella queries arriving at a monitoring
peer was 2.47 hops [16]. In order to fully understand the
true implications of our Zipf observation, we conducted a
simple simulation. We varied the query TTL and compared the
query success rates for a 40,000 node Gnutella network that
distributed the objects either in a uniformly random fashion or
as a Zipf distribution. For the uniformly distributed scenario,
we varied the number of replicas available by 1, 4, 9, 19 and

39 for a corresponding replication ratios of 0.005%, 0.0125%,
0.025%, 0.05% and 0.1%, respectively. The average number of
replicas of our dataset was 5. For each of the TTL values of 1,
2, 3, 4 and 5, on average the query reached 0.015%, 0.2525%,
3.0675%, 26.25% and 82.95% of the peers, respectively. We
noted that the Zipf distribution behaved similar to a system
with replication ratios as low as 0.005%. Hybrid P2P systems
are likely to choose a small TTL before switching to structured
lookup. In a system that used a TTL of 3, the query reached
over a thousand nodes and yet achieved a success rate of

Fig. 7. Jaccard similarity over time for the set of query terms for the time interval (Qt) vs. the set of popular file terms (F ′).

about 5%. For comparison, a random distribution model with a
replication ratio of 0.1%, would have predicted a success rate
of 62%. Our analysis showed that very few objects actually
have a high enough replication ratio under the power law
distribution of object replicas to make the flooding component
of hybrid P2P searches feasible.

VI. RELATED WORK

Gia [17] employed one-hop replication, topology adaptation
and a search mechanism based on random walks to improve
the search performance of Gnutella. Gia was evaluated using
a uniform object distribution on up to 0.5% of the peers. We
show that the Zipf distribution exhibited in real-world P2P
systems located fewer than 1% of the objects with replication
ratios as high as 0.5%.

Zaharia et al. [13] showed that 20% of the file descrip-
tions were misspelt. Our analysis showed that the annotations
themselves exhibited a Zipf like behavior. Fessant et al.
[18] analyzed the eDonkey network to show that the objects
exhibited a Zipf like distribution. Similarly Zhao et al. [19]
illustrated that objects exhibited a Zipf distribution. We show
that the annotations were Zipf like for a wide variety of
object annotations and this distribution significantly affected
the query performance.

Hybrid P2P [5], [20], [21] systems had leveraged the
combined benefits of unstructured and structured P2P systems
to efficiently locate both popular and rare contents. Queries
were first flooded using the unstructured network to locate
popular contents. If the search failed, then the query was re-
issued using the structured mechanism. However, we showed
that few contents had a sufficiently high replication ratio in
order to make the unstructured component of hybrid P2P
systems feasible. In [5], Loo et al. considered queries to be

rare if they contained fewer than 20 results. Our results show
that fewer than 4% of the objects in the system are replicated
on 20 or more peers.

VII. DISCUSSION

There is a need to develop unstructured overlays that are
aware of underlying temporal distributions of objects queries.
We showed that only 2% of objects were replicated in more
than 0.1% of the nodes can be popular. A hybrid P2P system
that used this observed object distribution would perform
worse than a DHT-based search because few objects are
replicated enough to make the unstructured search component
efficient. We showed that the set of popular query terms
remains stable over time and exhibit a similarity of over 90%.
We also showed that despite the Zipf popularity distributions
of both query terms and file annotation terms, there is little
similarity over time (< 20%) between popular file annotation
terms and popular file terms. Prior P2P search performance
analysis did not take into account this mismatch between the
query terms and object annotations and thus overestimated
query performance. We believe that our observation requires
a rethinking of unstructured P2P mechanisms for practical
networks. Our ongoing research is focused on building P2P
systems that can react to the observed temporal changes in
query term popularity [9]. Our approach created synopses of
content at each peer. The synopses was adapted dynamically to
take into account transiently popular terms and thus improved
overall search success rates.

ACKNOWLEDGMENTS

Supported in part by the U.S. National Science Foundation
through grant CNS-0447671.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5

F
lo

o
d
 S

u
c
c
e
s
s
 R

a
te

Flood TTL

Zipf
Uniform (1 replicas)
Uniform (4 replicas)
Uniform (9 replicas)

Uniform (19 replicas)
Uniform (39 replicas)

Fig. 8. Query success rates for a 40,000 node Gnutella network using uniform distribution as well as Zipf distribution. Replication amounts were varied.

REFERENCES

[1] A. Rowstron and P. Drushel, “Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems,” in 18th IFIP/ACM
Conference on Distributed Systems Platforms (Middleware 2001), Hei-
delberg, Germany, Nov. 2001.

[2] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 1, pp. 41–53, Jan. 2004.

[3] “The gnutella protocol specification v0.6,” http://rfc-gnutella.
sourceforge.net/src/rfc-0 6-draft.html.

[4] L. Massoulie, E. L. Merrer, A.-M. Kermarrec, and A. Ganesh, “Peer
counting and sampling in overlay networks: random walk methods,” in
PODC ’06: Proceedings of the twenty-fifth annual ACM symposium on
Principles of distributed computing, Jul. 2006, pp. 123–132.

[5] B. T. Loo, R. Huebsch, I. Stoica, and J. M. Hellerstein, “The case for a
hybrid p2p search infrastructure,” in Workshop on Peer-to-Peer Systems
(IPTPS ’04), San Diego, CA, Feb. 2004, pp. 141–150.

[6] W. Acosta and S. Chandra, “Understanding the practical limits of the
gnutella p2p system: An analysis of query terms and object name
distributions,” in Proceedings of the ACM/SPIE Multimedia Computing
and Networking (MMCN ’08), San Jose, CA, April 2008.

[7] S. Zhao, D. Stutzbach, and R. Rejaie, “Characterizing files in the
modern gnutella network: A measurement study,” in Proceedings of the
SPIE/ACM Multimedia Computing and Networking (MMCN ’06), San
Jose, CA, 2006.

[8] H. Pucha, D. G. Andersen, and M. Kaminsky, “Exploiting similarity
for multi-source downloads using file handprints,” in Proc. 4th USENIX
NSDI, Cambridge, MA, Apr. 2007.

[9] W. Acosta and S. Chandra, “Exploiting the properties of query workload
and file name distributions to improve p2p synopsis-based searches,”
in Proceedings of the IEEE Conference on Computer Communications
(INFOCOM ’08) - Mini Symposium, Phoenix, AZ, April 2008.

[10] D. Stutzbach and R. Rejaie, “Capturing accurate snapshots of the
gnutella network,” in IEEE Global Internet Symposium, Miami, FL, Mar.
2005, pp. 127–132.

[11] “The phex gnutella client,” http://phex.kouk.de.
[12] C. Davies, “Applerecords,” www.cdavies.org/applerecords.html.
[13] M. A. Zaharia, A. Chandel, S. Saroiu, and S. Keshav, “Finding content

in file-sharing networks when you can’t even spell,” in 6th Workshop
on Peer-to-Peer Systems (IPTPS’07), Bellevue, WA, Feb. 2007.

[14] W. Acosta and S. Chandra, “Improving search using a fault-tolerant
overlay in unstructured p2p systems,” in 36th International Conference
on Parallel Processing (ICPP ’07), Xian, China, Sep. 2007.

[15] S. Chandra and X. Yu, “Share with thy neighbors,” in Multimedia
Computing and Networking (MMCN 2007), San Jose, CA, Jan. 2007.

[16] W. Acosta and S. Chandra, “Trace driven analysis of the long term evo-
lution of gnutella peer-to-peer traffic,” in the eighth Passive and Active
Measurement conference (PAM 2007), Louvain-la-neuve, Belgium, Apr.
2007.

[17] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker,
“Making gnutella-like p2p systems scalable,” in Applications, tech-
nologies, architectures, and protocols for computer communications
(SIGCOMM ’03), 2003, pp. 407–418.

[18] F. L. Fessant, S. Handurukande, A.-M. Kermarrec, and L. Massouli,
“Clustering in peer-to-peer file sharing workloads,” in Proceedings of
the 3rd International Workshop on Peer-to-Peer Systems (IPTPS’04),
San Diego, CA, Feb. 2004.

[19] S. Zhao, D. Stutzbach, and R. Rejaie, “Characterizing files in the modern
gnutella network: A measurement study,” in Proceedings of SPIE/ACM
Multimedia Computing and Networking, vol. 6071, San Jose, CA, Jan.
2006.

[20] M. Zaharia and S. Keshav, “Gossip-based search selection in hybrid
peer-to-peer networks,” in 5th Workshop on Peer-to-Peer Systems (IPTPS
’06), Santa Barbara, CA, Feb. 2006.

[21] H. Cai, P. Gu, and J. Wang, “Asap: An advertisement-based search
algorithm for unstructured peer-to-peer systems,” in Proceedings of the
IEEE International Conference on Parallel Processing (ICPP’07), Xian,
China, Sep. 2007.

